Challenges and Preparedness of SDN-based Firewalls

Vaibhav Hemant Dixit, Sukwha Kyung,
Ziming Zhao, Adam Doupé, Yan Shoshitaishvili and Gail-Joon Ahn
Arizona State University, Tempe, AZ, USA
Email: {vdixit2, skyung1, zmzhao, doupe, yans, gahnl}@asu.edu

ABSTRACT

Software-Defined Network (SDN) is a novel architecture created to
address the issues of traditional and vertically integrated networks.
To increase cost-effectiveness and enable logical control, SDN pro-
vides high programmability and centralized view of the network
through separation of network traffic delivery (the "data plane")
from network configuration (the "control plane"). SDN controllers
and related protocols are rapidly evolving to address the demands
for scaling in complex enterprise networks. Because of the evolu-
tion of modern SDN technologies, production networks employing
SDN are prone to several security vulnerabilities. The rate at which
SDN frameworks are evolving continues to overtake attempts to
address their security issues.

According to our study, existing defense mechanisms, particu-
larly SDN-based firewalls, face new and SDN-specific challenges in
successfully enforcing security policies in the underlying network.
In this paper, we identify problems associated with SDN-based fire-
walls, such as ambiguous flow path calculations and poor scalability
in large networks. We survey existing SDN-based firewall designs
and their shortcomings in protecting a dynamically scaling network
like a data center. We extend our study by evaluating one such SDN-
specific security solution called FlowGuard, and identifying new
attack vectors and vulnerabilities. We also present corresponding
threat detection techniques and respective mitigation strategies.

ACM Reference Format:

Vaibhav Hemant Dixit, Sukwha Kyung, Ziming Zhao, Adam Doupé, Yan
Shoshitaishvili and Gail-Joon Ahn. 2018. Challenges and Preparedness of
SDN-based Firewalls. In SDN-NFV Sec’18: 2018 ACM International Workshop
on Security in Software Defined Networks Network Function Virtualization,
March 19-21, 2018, Tempe, AZ, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3180465.3180468

1 INTRODUCTION

In traditional networks, both control and data planes are tightly
integrated in physical devices. To specify routing policies in tradi-
tional networks, network administrators must maintain forwarding
rules individually in all switches and routers in the network. In
contrast, SDN has brought significant changes to how networks
function by decoupling the control plane from data plane. The de-
coupling abstracts the higher level functionality and moves the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5635-0/18/03...$15.00
https://doi.org/10.1145/3180465.3180468

intelligence of network configuration to a centralized controller.
This innovation has influenced both industries and academic insti-
tutions to persistently work towards adaptation and evolution of
SDN. The two main advantages of SDN (central programmability
and visibility) tremendously improve cost-effectiveness and ease of
maintenance in these complex networks.

The security of conventional networks is often dependent on
legacy firewalls and intrusion detection systems (IDS). However,
both of these security mechanisms are ill-suited for protecting
SDN environments. Traditional firewall functions are based on
static rule set, which lacks fine granularity. Filtering the traffic is
performed by matching every packet against allow or deny policies,
using only source, destination IP addresses and TCP/UDP ports.
Thus, the existing static and coarsely grained security mechanisms
lack adaptivity and scalability. Consequently, it is critical that an
SDN-based firewall solution leverages the functions of controller
to enforce the security of SDN.

Recently, there have been numerous studies to address security
concerns that are specific to SDN. Some of these work propose
SDN-based firewalls that work in collaboration with controller
and provide a centralized security framework [5, 7, 13]. However,
the feasibility of these firewall solutions on enterprise networks is
uncertain as these systems are often evaluated in simulated environ-
ments, such as mininet [2], which are inadequate to demonstrate
their efficiency in real world networks. Thus, it is critical to review
current proposed SDN-based firewall solutions, discover the short-
comings, and identify ways to improve them for SDN deployment
in real-world networks.

In this paper, we revisit the existing SDN-based firewall designs
to assess their readiness in protecting large-scale networks. We
identify vulnerabilities in these existing designs for detecting secu-
rity policy conflicts in an SDN. Along with surveying shortcomings
of the existing work, we also revamp one of the accepted firewall
designs, called FlowGuard [7], as our case study. We identify short-
comings of the current FlowGuard design and propose improved
measures for better performance and accurate conflict resolution.
We also observe that assessment of SDN security solution on a simu-
lated environment does not guarantee its credibility in a real world
network. Therefore, in our evaluation, we use an enterprise ready
controller, OpenDayLight [3] and incorporate ScienceDMZ [6] net-
work at Arizona State University, as the target underlying topology.

2 BACKGROUND

2.1 OpenFlow

The decoupled control plane logic in SDN makes the forwarding
decisions and enforces policies. This information sharing between
SDN controller and switches takes place using APIs provisioned
by OpenFlow protocol. OpenFlow enabled switches maintain the

https://doi.org/10.1145/3180465.3180468
https://doi.org/10.1145/3180465.3180468

,ﬂ\/‘v’\\\
| \
‘ A £y
‘ Iy)
al / A
’ /
A e /
e T=~=~.__/Control plane
(o7 -, ‘
m— 4 \ //
—— \
e, \ =
’\ \\ Vd _—— Data plane
L___4aN \ ,)
[~ \ > \
| ~ \ ’
\ Fi S \ f
Internet Firewall ~o \ ¢

Figure 1: Firewall in a traditional network.

flow routing policies in flow tables. A typical rule present in a
flow-table has 3 different field sets for packet handling: Match,
Action and Statistics. The match set allows packet filtering based
on header fields. After a successful match, the packet undergoes
respective actions. As per the OpenFlow standard, the first packet
of a network flow is typically sent to the controller, which then
inspects the packet headers and decides actions to be taken for rest
of the flow. This action can be either to drop or forward. The central
visibility in SDN is of great advantage as controller can extrapolate
the future impact of traffic on any other node in the network.

2.2 SDN Controller

In an SDN, a controller behaves much like a kernel of network
operating system. Hardware based services of traditional networks
like firewall and load balancer run as software applications within
a controller. SDN-Controllers are capable of much more than a tra-
ditional control plane (in which a particular node remains oblivious
of network activity on any other node in the network). Some light
weighted controllers are used for academic testing and prototyping,
whereas enterprise-ready ones are complicated in their design and
functionality. Due to the lack of implementation standards, these
controllers are implemented differently and often leave security
loopholes in their implementation and design. Two of the most pop-
ular SDN controllers on the market are OpenDayLight (ODL) and
Open Network Operating System (ONOS). Both are open-source
projects hosted by The Linux Foundation and differ greatly in their
internal designs and implementation.

2.3 Firewalls

A conventional firewall, as shown in Figure 1, is a system that pro-
tects trusted internal networks from the untrusted and unsecured
outside world, such as the Internet. Firewalls filter and scan the
traffic in and out of the network. In the SDN paradigm, the posi-
tioning, functionality and capabilities of a firewall assume multiple
adaptations. Generally, they can be seen as an application running
in the control plane, as shown in Figure 2.

Security policies (such as Access Control Lists) for a network
are defined centrally at the controller. The firewall converts these
policies into flow rules which are installed in the network by a
flow programming application. The placement of firewall logic on

Firewall

Application SDN

Controller

(Control plane)

A =
4 [0 \ I
- e AN
! \ [N
, e \
— /
H 2=
Hﬂﬁl i (=4
— i Data plane
Internet |
— E’ /
N —

Figure 2: Firewall in an SDN network.

the control plane necessitates a novel design, tailored to protect
SDN. Firewall with a centralized view of a network can functionally
inspect local traffic to detect internal policy violations. Addition-
ally, an SDN-based firewall can provide resolutions for the conflicts
at runtime. Unlike traditional firewalls, which filter and scan ev-
ery packet coming and going through it, an SDN-based firewall
analyzes the first packet of each flow and installs rules for the
rest of that flow in relevant switches. Moreover, since the network
programmability is achieved from a software, multiple privileged
sources (applications, users and administrator) can asynchronously
install the routing rules and policies. Thus, SDN-based firewalls
should implement concurrent software listeners to get updates about
policy and flow modifications done on the network and verify the
impact of such changes to prevent any violations.

3 POTENTIAL OF SDN-BASED FIREWALL

As described in Section 2.3, an SDN-based firewall has a potential to
be a holistic network security solution by leveraging centralization,
high scalability and abstraction at the control plane. To harness
these advanced capabilities, we identify seven vital features that
a firewall should support to leverage the advanced network capa-
bilities enabled by SDN. We then survey existing techniques in
SDN-based firewalls to evaluate their readiness for securing an
SDN network.

(1) Centralized Policy Enforcement: The basic functionality
of any firewall is to enforce security policies in a network.
Thus, an SDN using traditional firewall hardware as a node
in the network is not harnessing the advanced functions
enabled by SDN: centralization and high programmability.
Centrally-specified policies can range from having fine gran-
ularity to being largely coarse. To enforce security on a
network, the firewall converts these policies into flow rules
which later get installed in the network.

(2) Centralized Flow Tracking (end to end flow control): The
rules installed in the network direct packets belonging to a
particular flow from source to destination. Thus, any path
taken by the packets belonging to a flow, can contain mul-
tiple flow rules from one or more switches. To effectively
enforce the policy, SDN-based firewall keeps track of the
flow path space. Merely confirming the policy on ingress and

Table 1: Comparison of SDN based Firewalls

Centralized

Centralized Conflict

Multi-Tenant ~ Auto Priority ~ Violation =~ Concurrent

Firewall Controller Flow Tracking Detection support handling Resolution updates Stateful ~ Year
Ethane! [5] Ethane X v X X X X X 2007
FortNOX [13] NOX X v X v X X X 2012
FlowGuard [7] FloodLight v v X X v X X 2014
FW over SDN [15] POX X v X X X X X 2014
SE-FloodLight? [12] FloodLight X v X v v X X 2015
AuthFlow [11] POX X v X X X X X 2016
Reactive stateful FW [16] RYU X v X X X X v 2016

egress port of a switch cannot guarantee a successful conflict
detection, let alone resolution. Furthermore, building a flow
path space by leveraging centralization guarantees to take
into account the changes that OpenFlow allows in header
fields of an in-route network flow.

(3) Conflict Resolution: Upon detecting a violation in the
rules when a new policy or a flow rule is being added, a com-
prehensive firewall should provide a conflict resolution too.
Different instances, FlowGuard [7] and SE-Floodlight [12],
prove that just allowing or denying a network update is
not an efficient firewall design. If there exists a path in the
network without a conflicting entity, the firewall should
dynamically perform resolution to give an updated path.
Similarly, the new update may only partially cause a viola-
tion. In this case, the firewall should dissect the update into
allowed/denied sets and process the allowed set. Therefore,
a comprehensive SDN-based firewall must support dynamic
conflict resolutions.

(4) Automatic Priority Handling: Different sources (for e.g.,
SDN controllers, applications, and administrator) update the
security policies in a network. Assigning an authorization
level to each source is important to prevent low priority
updates from overriding crucial network policies. Moreover,
an intelligent firewall should process these authorization
issues automatically and provide a robust user experience.

(5) Multi Tenant Support: A complex network, such as data-
centers, can contain more than one sub-networks and multi-
ple tenants for different services. Handling multiple tenants
is not a special concern in a traditional networks as different
firewalls are dedicated to each tenant network. However, in
SDN, the controller has a centralized view of entire network
topology and the firewall is responsible for centralizing the
enforcement of security policies. SDN-based firewall should
be capable of generating a distinction between subnetworks
even if their address ranges overlap.

(6) Scalability and Concurrency: In a dynamic and scalable
network, updates of security policies are not always sequen-
tial. Multiple user threads or applications running inside an
SDN controller make concurrent updates to modify firewall
policy or flow policy. In case of conflicting updates, lack
of handling of concurrency could lead to low priority rules
being handled before overlapping higher priority rules. The
issue with concurrent updates becomes a problem when

firewall applications are deployed in enterprise networks,
where there are multiple pipelines which access and update
the same configuration data stores.

(7) Stateful Support: Maintaining the states of active connec-
tions gives a definite advantage to the reliability of a firewall.
Connection states can be obtained using information from
OpenFlow communication. Information about the connec-
tion states should be formulated into time-bound flow rules
for a network, providing finer granularity in firewall rules
and a more accurate violation detection mechanism.

4 SURVEY OF SDN-BASED FIREWALLS

Security in SDN has become a popular research topic these days.
However, this focus arose almost a decade after the inception of
Software Defined Networking. The very first work on security of
SDN [5] focused only on implementing access control lists within
the SDN controller. Moreover, every work on SDN-based firewall
focuses on certain aspect of SDN security but misses other impor-
tant measures as shown in Table 1. Apart from the slow progress
in SDN-security, there are other factors responsible for the absence
of a comprehensive SDN-based firewall solution. First, there are
no operation and design standards for SDN controllers. Since an
SDN-based firewall is a software application running inside the con-
troller, unless there exist norms for the design of an SDN controller,
an agnostic SDN-based firewall is a distant dream. On the contrary,
there exists a well maintained standard for the OpenFlow proto-
col [4]. It is intensely adapting to the new requirements. Significant
changes in each of its revision demand correspondent changes in
the firewall design as well. Finally, the existing SDN-based firewalls
are developed and tested on simulated environments. Therefore, the
efficacy of a firewall in an enterprise sized network often remains
undetermined. Due to such factors, SDN-based firewalls become
obsolete soon after they are proposed.

The earliest SDN-based security solution, Ethane [5] accompa-
nied the very pioneering work on SDN architecture. It showcased
that security policies, instead of being defined individually on net-
work entities, can be centrally enforced. No mitigation or threat
prevention measures were discussed as the focus was on network
programmability. With a lack of standard OpenFlow protocol, the
policy enforcement was done only on a per-node basis via the

!ETHANE is a SDN architecture with inbuilt security
2Conflict resolution is not done for policy violations on the network but between
competing controller applications

controller. With increasing adaptation of SDN, security loopholes
regularly surfaced, with various work focusing on attack detection
and mitigation in SDN [14].

In FortNOX [13], security kernel has been proposed for the
NOX controller. FortNOX firewall prevents unauthorized rule in-
stallations by assigning control plane applications and users to
an authorization level. For a new policy, the decision to reject the
update depends upon the installer’s authorization level. FortNOX,
however, is not a comprehensive firewall solution. It lacks accu-
racy, as the rule conflict analysis is done in alias sets. The pairwise
comparison ignores the rule dependencies and thus, provides an
inaccurate result in complex networks with interdependent flow
rules. It also lacks an ability to provide a fine-grained conflict reso-
lution. FortNOX is designed as an extension for the NOX controller,
which is significantly different from enterprise controllers, and does
not handle the challenges that arise when several sources race to
install and modify rules concurrently.

An SDN-based firewall FLOWGUARD [7] is proposed as a pro-
totype solution built on FloodLight [1] controller. To detect flow
policy violations, the firewall pulls network topology information
from the data plane. It leverages NetPlumber [8] library to build a
plumbing graph (logical snapshot of a network). Using a tracked
space of a flow in the network comprising of initial source and final
destination addresses, it centrally validates the security policies in
entire network and provides dynamic resolutions.

To demonstrate a software based firewall solution, a simple SDN-
based firewall application [15] is proposed and deployed on the POX
OpenFlow-based controller. This is an experimental project to prove
the redundancy of hardware-based firewalls in an SDN network.
Only the usability of the firewall is emphasized by providing a
command-based user interface. Security-specific features such as
flow path space calculation and violation resolution are not given
much importance.

SE-FloodLight [12], an extension of FortNOX, is proposed as
a security enforcement kernel for the FloodLight controller. SE-
Floodlight provides resolutions to conflicts that surface when mul-
tiple applications are deployed in the same network by pre-signing
an application’s class, which gets digitally verified by firewall at
runtime. However, traffic engineering (such as tracking the path of a
flow to detect violations) is not done. Consequently, complex issues
which arise due to indirect and partial conflicts will go undetected.

An access control mechanism based on authentication at layer-
2 is proposed inAuthFlow [11]. To prevent the address spoofing
and communication overhead, the security mechanism is placed in
data link layer. The approach however conflicts with the principle
software-based model of SDN by employing decentralized security
techniques. Realizing a need of an extra hardware (radius server)
further increases the operational and configuration costs.

A reactive SDN-based firewall [16] is proposed as a stateful
solution. Policy enforcement is done based on the state of active
connections in a network, mined in a local state table. Yet, the new
generation requirements of the firewall (dynamic resolution and
end to end flow path calculations) are not dealt with.

Switch | MAC | MAC Eth VLAN 1P P 1P TCP TCP
Port src dst type 1D Src Dst Prot sport dport

IP 5-Tuple Sense

Figure 3: OpenFlow Ten-Tuple format

5 FIREWALL CASE STUDY: FLOWGUARD

To discover the challenges faced by SDN-based firewalls, we deploy
one of the existing solutions, FlowGuard, on a real and traffic-rich
network topology (ScienceDMZ), which is managed by a produc-
tion ready controller (OpenDayLight). We examine the number of
SDN specific features (centralization, scalibiltiy, abstraction and
dynamic responsiveness) the existing solutions harness and select
FlowGuard for an extended evaluation. Our decision of selecting
FlowGuard as a representative study of the challenges faced by
SDN-based firewalls is based on the quantified scale (Table 1) on
which we rate the existing solutions. First, to detect policy con-
flicts, FlowGuard leverages centralization by taking into account
the entire flow path space, unlike other solutions which inspect
packet headers at ingress and egress ports only. Second, FlowGuard
is relatively more agnostic in nature than other solutions as it uses
open-source Header Space Analysis framework [9] to calculate rule
interdependencies. In our experiments, we find multiple issues that
FlowGuard faces when built on the latest infrastructure and tested
on the actual complex network. These findings, along with possible
mitigation approaches, are discussed below:

(1) Ambiguous Flow Path Space: We find that the IP-5 Tuple
based approach used for conflict detection (See Section 4)
is prone to ambiguous flow path calculations. A firewall
with a centralized view of two or more different tenant sub-
networks cannot successfully distinguish one tenant from
others based solely on IP 5-Tuples. In a tenant-based net-
work (for e.g., in data center), multiple disconnected ten-
ants use similar network configurations. This leads to hosts
having identical IP 5-tuple addresses in two disconnected
sub-nets. On an OpenStack cloud with multiple different
tenants, FlowGuard produces conflicting flow path spaces
which further leads to undesired resolutions. In order to
prevent the conflict, we propose to use a more fine-grained,
OpenFlow 10-Tuple, as shown in Figure 3. Apart from the
existing fields in an IP 5-tuple sense, an OpenFlow 10-tuple
also includes a physical layer-2 port, protocol type, vlan id
and ethernet type. With this fine-grained set of header fields,
it is not possible to have duplicate route identification. In
addition, we can also prevent the ambiguity in flow path
space calculation.

(2) Conflicting Priority Handling: In a conventional firewall,
priority of the rules are implicit based on their ordering. In

®)

Match Action i f
Match Action i Match Action
src=A, set- src=A,dst=B Set-field= vian value out=4
dst=B field={vlan=TAG} vlan=TAG {vlan=""} is lost -
,out=2 out=3 ’ No match!
Lal =g = " B
src=A, dst=B, vian=C NP src=A, dst=B, vian=TAG I src=A, dst=B _’

(a) Resolution method: Dependency Breaking using Flow-Tagging

Flow Match Action Match Action
Source flow is
old src=A,dst=B o_ut=2, set- src=A,dst=B out=3 Deleted: A=>C
field={src=X},2 src=X,dst=B set-filed={dst=C},5 is not reachable
new - -
__________ - U C
- — ,g? @ sre=X, dst=C
src=A, dst=B I src=A,dst=B A’ _ _ _ _ _ _
src=A, dst=B B
(b) Resolution method: Flow Rejection
Flow Match Action Flow Match Action Wilcarded flow Flow Match Action
old src=A,dst=B out=2 old Src=* out=* Rem,\?ged: old src=A, out=3
e | - _ dst=* Interconnectivity dst=B
& _ == PRy -8
src=A, dst-p I src=A, dst=B src=A, dst=B I

(c) Resolution method: Flow Removal

Figure 4: Challenges faced by conflict resolution mechanisms in FlowGuard

an SDN-based firewall, the firewall rules and flow rules can
maintain their own set of priorities. FlowGuard divides the
firewall rule space into two disjoint sets of allow and deny
rules. However, this partitioning is performed either by con-
sidering implicit rule priorities (like in iptables) or not consid-
ering them at all. Thus, the absence of an intelligent firewall
decision logic (logically capable of assigning role-based pri-
orities) can violate the administrators actual intent of policy
enforcement. This can be addressed by taking the priorities
of policies in account from multiple sources, including IDS,
feedback module and network administrator.

Coarse Conflict Resolution: Upon successful detection of
policy conflicts, an SDN-based firewall should also be able to
dynamically resolve the violations between flow and firewall
policies. Different conflict resolution methods have been pro-
posed in FlowGuard [7], depending on the violation. In our
deployment, we discover that although these proposed ap-
proaches solve policy conflicts successfully, they come at the
cost of network’s availability and accuracy as shown in Fig-
ure 4. The new or modified rules prevent unauthorized traffic
in the network, but in some cases, also deny communication
between authorized hosts:

Challenge 1. Different flow rules matching the same header
fields can have inter-dependency issues. This can lead to
communication between unauthorized hosts as mentioned in
FlowGuard [7]. An approach to break the inter-dependency

is by tagging the header fields, and thus creating distinct
network flows. This approach, however, leads to the loss of
critical information from the original packet headers. For
example, vlan-tagging is used wherein extra tag action is
added in a dependent flow. In our testing of multi tenant
networks, vlan field plays an important role in steering traffic
between different subnets. By tagging vlan field with a hard
coded value, the dependency is broken but the subsequent
flow rules which are intended to match on the vlan field,
malfunction. Any flow rule which is not part of dependency
process (but is using the tagged field to process the packet
further in the network) may fail to match flow in which
packet headers are now changed.

Challenge 2. When a firewall detects that there is an entire
violation (i.e., the flow path space completely violates the se-
curity policy) in the existing flow path, all the rules present in
the flow path are removed from corresponding switches [7].
The tracked path, comprising of only source address from the
incoming packets and the destination address from the out-
going packets is matched against the firewall rule policies. In
our testing, we find that this approach is prone to loopholes
and comes at the cost of network’s availability. For example,
if a violating tracked space consists of rules from 5 switches,
and rules in the third switch (intermediate node) are only
wildcarded rules, all the rules including the wildcared rule
are deemed incorrect and removed. It leads to denial of any

©

(&)

authorized communication that the wildcarded rule was pre-
viously allowing in the network. To prevent resolutions from
losing availability of the network, higher-priority rules with
finer granularity should be installed. The wildcarded flows
require special attention as they are responsible for both
allowed and denied traffic passing through them.

Challenge 3. In the new OpenFlow protocol, actions per
match in a flow rule can be chained. It means when a packet
of a flow is matched by a flow rule in a switch, the same
packet can undergo multiple relevant actions. Upon detect-
ing a violation in a flow rule, deleting the entire flow rule
deletes all the violating and non violating actions within it.
Therefore, deletion of a flow rule requires careful examina-
tion. The action set within a rule can only partially violate
the policy, just as entire flow rule can have partial violations.
Performance Issue: The response time of FlowGuard sub-
stantially increases as the network scales. This is because
the conflict detection algorithm is based on dynamically
propagating a sample flow in the logical snapshot (plumb-
ing graph) of a network. Such a graph can potentially have
more than 100 nodes for a network of just 3 switches due
to the fact that a node in a plumbing graph is a match and
action set present in a flow rule. Various chained action
sets in each flow, and several such flows, make for a com-
plicated plumbing graph. When we tested the firewall on a
convoluted topology of flow rules, the violation detection
reached an order of seconds. This time is large enough for an
unauthorized communication to take place before a conflict
is successfully resolved by a firewall.

As an improvement, we propose to maintain a reachability
map which is updated during the initialization process of
a firewall. For future updates, full propagation of a sample
packet from source to destination can be avoided. For this,
we tested multiple hosts connected via 5 OpenFlow switches
in a linear topology. When a new flow rule update for an
intermediate switch in the flow path is made, a propagation
check (for policy enforcement) from first node to the last
was ignored. Instead, with the information that 2/3 of the
graph edges do not undergo a change, the propagation check
happened only for the overlapping nodes in the graph. Thus,
the performance is improved by reducing the propagation
time in proportion to number of overlapping edges.
Disregard for concurrent updates: In our testing, we found
issues when multiple threads make concurrent updates on
firewall policy or flow policy. In case of conflicting updates,
lack of concurrency handling leads to low priority rules with
a different action on same match being handled before the
higher priority rule. For example, if an administrator installs
anew flow rule in the network but a countermeasure engine
(at the same time) installs a conflicting action on the same
match, the decision of the asynchronous firewall depends
on which thread is executed first. The conflict detection and
resolution algorithm should provide thread-safe security en-
forcement and take into account role-based access control.
This can be achieved by using a privilege score assigned
to each authorized application and user as an input to the
algorithm resolving simultaneous action conflicts.

6 CONCLUSION AND FUTURE WORK

In this work we have juxtaposed existing SDN-based firewalls
against each other to inspect their readiness to be deployed in enter-
prise and large scale networks. We have identified various metrics
that an SDN-based firewall solution should address. Seven different
firewalls are then compared and evaluated against these metrics.
As a case study, we have deployed FlowGuard [7] on ScienceDMZ
network and discovered underlying vulnerabilities in protecting
a large scale, complex network. The challenges are individually
discussed and possible mitigation measures are proposed.

With the advent of SDN, attacks can be fine-tuned to target
different layers of SDN [10]. We want to extend the firewall to
incorporate advanced features which protect the SDN network
from various attacks targeting these layers. We plan to introduce an
agnostic and comprehensive firewall solution of our own with such
advanced capabilities to protect an SDN network from intrusions
before their occurrence.

ACKNOWLEDGMENTS

This work was partially supported by grants from National Science
Foundation (NSF-ACI-1642031) and a grant from the Center for
Cybersecurity and Digital Forensics at Arizona State University.

REFERENCES

[1] Floodlight: SDN Controller. http://www.projectfloodlight.org

2] Mininet: An Instant Virtual Network on your Laptop (or other PC). mininet.org

[3] OpenDayLight. https://www.opendaylight.org/

[4] OpenFlow Switch Specification 1.4.0. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf

M. Casado, M. J. Freedman, J. Pettit, J. Luo, and N. McKeown. 2007. Ethane:

Taking Control of the Enterprise. In Proceedings of the ACM SIGCOMM, August,

2007, Kyoto, Japan. (2007).

[6] E.Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski. 2013. The Science DMZ:
A network design pattern for data-intensive science. In 2013 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis.

[7] H.Hu, W. Han, G.]J. Ahn, and Z. Zhao. 2014. FLOWGUARD: Building Robust Fire-
walls for Software-Defined Networks. In Proceedings of the Third ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (Aug, 2014).

[8] P.Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. 2013.
Real Time Network Policy Checking using Header Space Analysis. In 10th USENIX
Symposium on Networked Systems Design and Implementation (2013).

[9] P.Kazemian, G. Varghese, and N. McKeown. 2012. Header Space Analysis: Static
Checking for networks. In 10th USENIX Symposium on Networked Systems Design
and Implementation (2012).

[10] D. Kreutz, F. M. V. Ramos, and P. Verissimo. 2013. Towards Secure and Depend-
able Software-Defined Networks. In Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking (2013).

[11] D.M.F. Mattos, L. H. G. Ferraz, and O. C. Duarte. 2016. AuthFlow: Authentication

and Access Control Mechanism for Software Defined Networking. In Annals of

Telecommunications December 2016, Volume 71 (2016).

P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran. 2015. Securing

the Software-Defined Network Control Layer. (2015). http://www.csl.sri.com/

users/porras/SE-Floodlight.pdf

[13] P.Porras, S. Shin, V. Ygneswaran, M. Fong, M. Tyson, and G. Gu. 2012. A Security

Enforcement Kernel for OpenFlow Networks. In Proceedings of the HotSDN,

August 13, 2012, Helsinki, Finland. (2012).

S. Scott-Hayward, S. Natarajan, and S. Sezer. 2016. A Survey of Security in Soft-

ware Defined Networks. In IEEE Communications Surveys and Tutorials (2016).

[15] M. Suh, S. H. Park, B. Lee, and S. Yang. 2014. Building Firewall over the Software-
Defined Network Controller. In Proceedings of 2014 16th International Conference
on Advanced Communication Technology (ICACT) (2014).

[16] S. Zerkane, D. Espes, P. L. Parc, and F. Cuppens. 2016. Software Defined Net-
working Reactive Stateful Firewall. In The 11th International Conference on Risks
and Security of Internet and Systems (2016).

5

[12

=
&

http://www.projectfloodlight.org
mininet.org
https://www.opendaylight.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://www.csl.sri.com/users/porras/SE-Floodlight.pdf
http://www.csl.sri.com/users/porras/SE-Floodlight.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 OpenFlow
	2.2 SDN Controller
	2.3 Firewalls

	3 Potential of SDN-based Firewall
	4 Survey of SDN-based Firewalls
	5 Firewall Case Study: FlowGuard
	6 Conclusion and Future Work
	Acknowledgments
	References

