Checking Intent-based Communication in Android with
Intent Space Analysis

Yiming Jingt, Gail-Joon Ahnt, Adam Doupéf, and Jeong Hyun Yi¢

fArizona State University

#Soongsil University

{ymjing,gahn,doupe}@asu.edu, jhyi@ssu.ac.kr

ABSTRACT

Intent-based communication is an inter-application commu-
nication mechanism in Android. While its importance has
been proven by plenty of security extensions that protect it
with policy-driven mandatory access control, an overlooked
problem is the verification of the security policies. Check-
ing one security extension’s policy is indeed complex. Fur-
thermore, intent-based communication introduces even more
complexities because it is mediated by multiple security ex-
tensions that respectively enforce their own incompatible,
distributed, and dynamic policies.

This paper seeks a systematic approach to address the
complexities involved in checking intent-based communica-
tion. To this end, we propose intent space analysis. Intent
space analysis formulates the intent forwarding functionali-
ties of security extensions as transformations on a geometric
intent space. We further introduce a policy checking frame-
work called IntentScope that proactively and automatically
aggregates distributed policies into a holistic and verifiable
view. We evaluate our approach against customized An-
droid OSs and commodity Android devices. In addition, we
further conduct experiments with four security extensions
to demonstrate how our approach helps identify potential
vulnerabilities in each extension.

1. INTRODUCTION

Modern mobile operating systems have shifted into a secu-
rity architecture that is fundamentally different from those
of traditional desktop OSs. Mobile applications (commonly
referred to as apps) run as unique security principles; they
are isolated in their respective sandboxes and receive few
privileges. Despite that apps are isolated, they interoperate
through inter-application communication. As such, a few
apps, whose workflows are directed by a user, can accom-
plish complex and diversified tasks. For example, an email
client exports a picture file to a photo editor; the photo edi-
tor modifies the picture and posts it online through a social
network client.
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A type of messaging objects called intents build a major
and sophisticated inter-application communication mecha-
nism in Android [13]. Intents are flexible as they can carry
simple data and even inter-process communication primi-
tives (e.g. Binder [2] and file descriptors [3]). Moreover, the
intent attributes are rich with Android middleware seman-
tics, which naturally facilitate access control decisions [12,
29]. As a result, the security community proposed plenty
of security extensions that implement policy-driven manda-
tory access control (MAC) for intent-based communication
[7,10-12,21,26,27,29,32,38]. Indeed, intents are not the only
inter-application mechanism in Android. The recent MAC
implementations [7,12,32] adopt derivations of SELinux ker-
nel MAC to cover the other Android mechanisms such as
files, sockets, and Binder. However, intents are out of the
scope of kernel MAC due to the incompatible semantics of
the kernel and middleware layers [12].

Defining and verifying the policy for each individual se-
curity extension that controls intent-based communication
is a complex task for a policy analyst. The recent emerg-
ing security requirements, such as “bring your own device”
(BYOD), call for fine-grained and precise policies. For exam-
ple, a single mobile device may host a doctor’s personal apps
and the apps of several clinics. The doctor and the clinics
would require that the deployed security policies accurately
enforce the boundaries between the apps of the respective
stakeholders. Meanwhile, mitigating existing threats related
to intents such as communication hijacking [13], confused
deputy attacks [10,19], and accidental data disclosure [26]
requires that policies are tailored to the peculiarities of each
threat and each vulnerable app.

Furthermore, the complexity significantly increases when
intent-based communication is mediated by multiple collab-
orating security extensions that enforce their respective se-
curity polices. First, the security extensions define incom-
patible schemes, logic, and semantics for their policies. Sec-
ond, the policies that determine how intents are processed
and forwarded among apps are distributed across multiple
security extensions. Moreover, the policies are stored and
updated in a dynamic manner due to frequent app installs,
uninstalls, and upgrades. As a consequence, a policy analyst
must manually inspect every security extension’s policy, ag-
gregate them into a holistic view, and search for violation of
security properties. Overall, policy verification becomes an
error-prone and tedious task that requires great sophistica-
tion from the policy analyst. This leads to slow adoption of
Android security extensions despite that quite a few modern
security extensions have been proposed recently.
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To effectively address the complexities of checking intent-
based communication, we argue for the need of a general,
holistic, and proactive policy checking framework that an-
alyzes the incompatible, distributed, and dynamic intent-
based communication policies in Android. In particular, the
framework automatically aggregates the policies and gener-
ates a holistic view that lends itself well for formal verifi-
cation. The tools that currently exist are dependent and
specialized to each security extension. For example, EASE-
Android [33] and SETools [4] are tailored to SEAndroid and
SELinux. To the best of our knowledge, we propose the first
tool to holistically check multiple security extensions.

This paper proposes intent space analysis to address the
complexities in checking intent-based communication. In-
tent space analysis is built upon a geometric intent space
model. In this model, we propose to represent intents with
a K-dimensional space of regular languages, in which each
dimension corresponds to an intent attribute. As such, an
intent maps to a point in the space, multiple intents map to
a subspace, and security extensions are modeled as transfer
functions that map one subspace to another. For example,
a security extension that denies any intent can be modeled
as a transfer function that maps all K attribute values (de-
noted as {.#}*) to an empty space regardless of source or
destination apps.

We further propose a policy checking framework, called
INTENTSCOPE. Given an Android device, INTENTSCOPE ac-
quires and parses the live intent forwarding states of each se-
curity extension that controls intents. Afterwards, INTENT-
SCOPE automatically instantiates transfer functions from
the acquired states. By composing the transfer functions,
INTENTSCOPE constructs a snapshot of the holistic intent
forwarding state as a graph whose vertices correspond to
apps and whose edges correspond to system-allowed intents
(as intent spaces) between apps. The graph supports flexible
queries and facilitates novel security assessment tasks such
as checking domain isolation, enumerating UI workflows [26],
and discovering permission re-delegation paths [19].

This paper makes the following main contributions:

e We propose an intent space model for modeling intent-
based inter-application communication in Android. Our
intent space model is general and independent of spe-
cific security extensions.

e We propose INTENTSCOPE, a general, holistic, and proac-

tive policy checking framework for intent-based com-
munication. INTENTSCOPE reasons about a holistic
graph derived from the live intent forwarding states
maintained by multiple security extensions in an An-
droid device.

e We implement a prototype of INTENTSCOPE and eval-
uate it against mainstream security extensions, com-
modity Android devices, and customized Android OSs.
We also showcase a series of novel analysis tasks that
help a policy analyst discover weak points in policies.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides the background and problem description of
our work. Section 3 describes our intent space model. Sec-
tion 4 introduces INTENTSCOPE and describes its system de-
sign followed by experimental results in Section 5. Section 6
discusses limitations and future work. Section 7 overviews
related work. Section 8 concludes this paper.

2. BACKGROUND

In this section, we first discuss the background of intent-
based communication in Android. We then present the prob-
lem description of this work.

2.1 Intent-based Communication

Components are the basic building blocks of Android apps.
There are four types of components, and each type serves a
specific purpose:

e Activities: An activity represents the user interface.

e Services: A service has no user interface and runs in
the background for time-consuming operations.

e Content providers: A content provider exposes an
app’s data as tables and supports basic operations such
as insert, delete, and update.

e Broadcast receivers: A broadcast receiver is trig-
gered upon system or application events.

A component can be exported to other apps. Each ex-
ported component of an app is an entry point for intents
through which the other apps or the Android system can
send intents. Typically, an app exports its components to
other apps by statically declaring the exports in the app’s
manifest!. However, an app can also dynamically create and
export components in its code. Two system services, Pack-

ageManagerService (PMS) and ActivityManagerService (AMS),

maintain the information about each installed app’s compo-
nents regardless of how the components are exported—either
statically or dynamically.

Intents can connect an app’s component to exported com-
ponents. An app creates an intent and sets its embedded at-
tributes. The intent is then processed by the Android system
and the security extensions, which automatically resolve an
intent’s recipients based on the following intent attributes:

e Component name: This attribute explicitly specifies
the expected recipient of the intent.

e Action: This attribute describes the general action
to be taken by a recipient component, such as PICK,
VIEW, EDIT, or SHARE.

e Scheme: This attribute describes the protocol that
serves the data, such as http, mailto, or tel.

e Authority: This attribute describes the location of
the data, such as www.google.com or paypal.

e Type: This attribute describes the MIME type of the
data, such as audio/ogg, video/*, or */*. Note that
wildcards are allowed.

e Category: This attribute provides additional infor-
mation about the data. For example, a category BROWS—
ABLE implies the data that can be opened in a web
browser, such as a link to an image.

Two types of intents exist in Android. FExplicit intents
specify the component name only. Android delivers an ex-
plicit intent directly to its specified component regardless of
the presence of any other attributes. Implicit intents spec-
ify the attributes other than component name. Thus, an
implicit intent’s recipients are implicit and must be resolved
at intent-sending time; Android must search the registered
components to resolve the recipient components.

!The manifest is a required XML file included in the app by
the developer.



2.2 Problem Description

Intent-based inter-application communication has received
much research attention. In general, two aspects are cov-
ered: previously unknown security limitations of intents [10,
13,15, 19, 25] and generic policy-driven security extensions
that remedy the limitations [7,10-12, 21, 26, 27, 29, 32, 38].
However, there is an overlooked gap between configuring
generic security extensions and securing a specific Android
device. Every app, every device, and every user are different.
A policy analyst needs insights about intent-based commu-
nication before she can accurately define how the apps in her
device communicate through intents in her intended ways.
To bridge the gap, we seek a systematic approach for a policy
analyst to conveniently acquire such insights.

Intent-based communication is mediated by multiple se-
curity extensions. While multiple security extensions pro-
mote the flexibility of controlling intent-based communica-
tion, they also introduce new challenges in definition and
verification of their policies.

C-1: Incompatible policies. The security extensions define
their own incompatible schemas and semantics. For exam-
ple, FlaskDroid [12] inherits SELinux’s policy semantics of
type enforcement. Saint [29] uses an XACML-like schema
customized by the authors. IntentFirewall’s policy is unique
and unlike the other security extensions, however it speci-
fies a critical set of tests on intent attributes. As far as we
know, no existing policy checker can work with every exten-
sion’s policy. Therefore, checking such incompatible policies
remain a manual process that requires a policy analyst to
master the details of every security extension.

C-2: Local policies. Each security extension manages a local
view of system-wide policies. For example, IntentFirewall
enforces its centralized policy specified by a policy admin-
istrator; intent filters manages policies specified by decen-
tralized apps but enforce the policy in a centralized manner.
Each security extension makes its decision by itself and is
not aware of the other security extensions. No security ex-
tension possesses a holistic view of the reachability among
installed apps as controlled by all the security extensions.

Problem Statement. To address the challenges in check-
ing intent-base communication, we seek to build: a) a gen-
eral policy checker that easily adapts to the policy schema
of any security extension that controls intents; b) a proac-
tive policy checker that keeps monitoring the live intent for-
warding states of security extensions; and ¢) a holistic pol-
icy checker that aggregates the policies into a holistic and
verifiable view. With the policy checker, we attempt to sys-
tematically answer the following two questions regardless of
specific security extensions, apps, or devices: a) what in-
tents can an app send to a specific app; and b) what intents
can an app receive from a specific app. Meanwhile, we ex-
pect the checker to be mostly automated so as to reduce the
burden on policy analysts.

Assumptions. In this work, we assume an Android de-
vice is loaded with multiple policy-driven security extensions
that mediate intent-based communication among installed
apps. The apps could be malicious, but they do not seek
to escape from the confinement of the security extensions.
In other words, the policies define apps’ capabilities to send
or receive intents. Threats that compromise the integrity of
the Android system, the security extensions, and the policies
are beyond the scope of our approach.
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Figure 1: (a) The intent space from App A to App
B shrinks as it passes security extensions, modeled
here by the T1, T>, T3. (b) Composing transfer func-
tions to model app-to-app transformation.

3. INTENT SPACE ANALYSIS: MODEL

We believe that creating the right abstraction model is the
first step toward checking intent-based communication. In
this section, we elaborate the intent space model that lays
the foundation for intent space analysis.

Figure 1 demonstrates a motivating example where App A
sends intents to App B. For simplicity of the example, we
consider only actions and categories, and we represent the
actions on the z-axis and the categories on the y-axis. The
initial space of App A is full in both dimensions because
an app can create arbitrary intents before the intents are
processed by any security extension. And because the secu-
rity extensions only forward the intents that match certain
actions or categories specified in their policies, the space
gradually shrinks as the transformations 71, T>, and T3 are
applied to the initial space (Figure 1 (a)). The remaining
space at App B indicates the intents that App A can send to
reach App B. And if no space remains, App A cannot com-
municate with App B through intents. One step further,
we combine the transfer functions into a composite transfer
function that describes app-to-app space transformation as
illustrated in Figure 1 (b). This composite function captures
all the security extensions. Thus, it describes the holistic in-
tent forwarding state.

3.1 Intent Space

Formally, an intent space is a K-dimensional space of reg-
ular languages defined as Z = {.>|<}K7 where “.*” is the reg-
ular language that describes all words. The K dimensions
correspond to K intent attributes, which are selected by the
policy analyst based on her requirements. A policy analyst
can set a smaller K if the security extensions to be analyzed
do not inspect every intent attribute. An intent ¢ maps
to a point in the space, such as: {action: SEND,category:
DEFAULT}2 for K = 2. Multiple intents map to a subspace
defined as a hypercube or a union of multiple hypercubes. A
hypercube is represented with ezactly K regular languages
at K dimensions, such as {action: SEND|SEND_MULTI, cat-
egory: ¢ (the empty string language)}. Any hypercube with
fewer than K dimensions or undefined dimensions is invalid
and considered as an empty space & in the subsequent com-
putations.

2For clarity in this example we annotate the dimensions with
the attributes.



3.2 Intent Space Algebra

Algorithms that check intent-based communication be-
tween two apps must determine whether an app’s allowed
outgoing intents overlap with the other apps’ allowed incom-
ing intents. To this end, we define the basic set operations
on Z: intersection, union, complementation, and difference.
Note that a point in Z can be considered as a special hyper-
cube whose regular languages contain only one word; and
a subspace is a union of multiple hypercubes. We therefore
define set operations for hypercubes and carry over the oper-
ations to other intent space objects. Throughout the rest of
this paper, we overload the term intent space to refer to all
types of intent space objects including points, hypercubes,
subspaces, as well as the entire intent space.

Intersection. The intersection of two intent spaces is
computed by intersecting the regular languages at each di-
mension. Formally, given two intent spaces i,j C Z and
their dimension set D = {d1,dz,...,dy}, their intersection
iNjis {di : regexi Nregex], ..., dy : regexj Nregex)}. For
example, {A[12], C1} N {e, C1} is equivalent to {A[12], C1}
and {A[12], C1} N {A3, C1} is equivalent to {&, C1}. Note
that {@, C1} is missing a dimension and thus is considered
as an empty space J.

Union. A union of intent spaces may not be simplified to
a single intent space. For example, the union of two intent
spaces {A1]A2, C1} and {A3, .*} cannot be represented by
any single hypercube and we simply represent the union as
{A11A2, C1} U {A3, .*}. We can simplify the result if the
intent spaces are on the same hyperplane. For example,
{A11A2, C1} U {A3, C1} is equivalent to {A[1-3], C1}.

Complementation. The complement of an intent space
¢ is the union of all the intent spaces that do not intersect
with i. Recall that the intersection of two intent spaces is an
empty space if the intersection is missing any of the K di-
mensions. We compute i’s complement i with Algorithm 1,
which finds all non-intersecting intent spaces by replacing
the regular language at one dimension with its complement
if the language is not .* and setting .* at the other dimen-
sions. For example, the complement of {¢} is {.*} and the
complement of {A1, C1} is {A1, .*} U {.*, C1}.

Algorithm 1: Computing an intent space’s complement

Data: ¢
Result: ¢
i
for dimension d; € D do

L < regular language at d;;

if L # .x then

| ' U{di:o*,..,di i Ly di s kg

return i’

Difference: The difference (or subtraction) is computed
with intersection and complementation, i.e., i—j = iNj. For
example, {A1|A2, .*} - {A2, .x} is equivalent to {A1|A2, .*}
N {A2, .*}, which is {A1, .*}. A slightly more complicated
example which reuses the complement of {A1, C1} is:

{A11A2,Cc1|C2} — {A1,C1}

= {A1]A2,C1]C2} N {A1,C1}

= {A1]A2,c1]C2} N ({A1, .*} U {.*,C1})
= {A2,c1/C2} U {A1]A2,C2}

3.3 Transfer Function

For convenience of analysis, we assume that all security
extensions deny by default. For those security extensions
that accept by default, it is trivial to reduce them into deny-
by-default extensions with a least-priority rule that accepts
everything. Therefore, apps cannot communicate if the se-
curity extensions specify no rule. Conversely, the rules of
a security extension that allow/deny some intents from one
app to another app essentially specify how the security ex-
tension forwards or drops intents from the source app to the
destination app. As we represent intents as an intent space,
we model a security extension’s intent forwarding and drop-
ping functionality as intent space transformation and rep-
resent a security extension with a transfer function. Given
that the space of all apps is A, a transfer function T is:

T:(a,i) 2T aecAicT

To aggregate multiple transfer functions into a holistic view,
we iteratively apply each (a, %) tuple of the output of a trans-
fer function to the input of the next transfer function and
build a composite transfer function.

A transfer function captures the transformation that a se-
curity extension performs on A, Z, or both. Suppose we are
to model a simple security extension that works like a Layer-
2 network switch: it only supports coarse-grained control
over which app can send intents to another app regardless
of intent attributes. Such an extension can be modeled as a
transfer function that transforms only on A. IntentFirewall
denies an app from sending a specific intent regardless of
the intent’s destination apps. It therefore can be modeled
as a transfer function that only transforms on Z. We elab-
orate more details about how we model security extensions
for intent space analysis in the subsequent section.

4. INTENT SPACE ANALYSIS: SYSTEM

In this section, we describe our policy analysis frame-
work INTENTSCOPE which supports intent space analysis.
To demonstrate its generality, we also discuss how INTENT-
ScoPE works with the security extensions for intents in An-
droid Open Source Project (AOSP) and their policies. We
emphasize that INTENTSCOPE is not limited to only the dis-
cussed security extensions in this paper.

Figure 2 depicts the workflow of INTENTSCOPE. In gen-
eral, INTENTSCOPE starts from acquiring the policies of secu-
rity extensions, then creates transfer functions, and converts
the composite transfer function into a holistic reachability
graph for subsequent analysis.

Acquiring Policies. The policy of a security extension is
often referred to as a dedicated file stored in the filesystem.
In this work, we opt for a more general definition of policy
and propose to acquire all the states and configurations of
security extensions so long as they specify how the intents
are forwarded. To this end, we create a privileged watch-
dog app for INTENTSCOPE that proactively observes policy
changes and automatically takes a snapshot of the policies.
The implementation of the watchdog app is largely specific
to the analyzed security extensions. For example, intent
filters are registered by apps and maintained by AMS and
PMS. The watchdog app acquires the registered intents fil-
ters on an Android device by dumping the internal states of
AMS and PMS after an app registers/unregisters any intent
filter.



]
|
} i
| | Protected Intent Intent P !
| |_Broadcasts Firewall Filters |
|

) ] -
< | 5o [
| Explicit Intents |

|
|
| |
t > Fllntent" » Permissions
| irewal }
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

Policies

Teerm (Tie (Tiew (Thp(:))

T}EERM (TI%W ( ))

e
°'~°-?f-e

Transfer Functions Holistic Reachability Graph

Figure 2: IntentScope System Workflow.

Creating Transfer Functions. Next, we map the ac-
quired policies onto transfer functions. Given that a secu-
rity extension makes decisions based on its loaded policy and
implemented policy interpretation logic, a transfer function
that models the intent forwarding state must capture both.
While the policy can be automatically retrieved by INTENT-
ScoPE’s watchdog app, the policy interpretation logic still
requires manual effort to model. INTENTSCOPE requires the
security extension’s authors or policy analysts to define a
transfer function for its policy interpretation logic and to
create a policy parser that instantiates the corresponding
transfer function. Note that this logic construction over-
head is only performed once as the defined transfer functions
can be reused and the parsers can automatically instantiate
transfer functions. We elaborate our transfer functions for
the AOSP security extensions in Section 4.1.

Building a Holistic Reachability Graph. To facili-
tate analysis and visualization, we propose to convert the
composite transfer function into a directed graph that rep-
resents inter-application reachability. Formally, a holistic
reachability graph is denoted as G = (V, E), where V is a
set of vertices that correspond to the installed apps and F
is a set of edges that correspond to the intent spaces that
an app can send to reach another app. Constructing such a
reachability graph is straightforward. Each app maps to a
vertex in the graph. For each app, we apply the composite
transfer function on its initial intent space (e.g., {.*}*) and
add a directed edge if any non-empty intent space remains at
the destination app. We assign the remaining intent spaces
on the edges as their weights, which allows INTENTSCOPE
to support flexible queries and graph pruning as a policy
analyst adds constraints on the graph.

4.1 Modeling AOSP Security Extensions

Intent filters, IntentFirewall, protected broadcasts, and
permissions are the integral parts of AOSP and therefore
widely deployed in COTS Android devices. They also serve
as reference implementations for other security extensions.
For example, Apex [27] and CRePe [14] extend the permis-
sions; and SEAndroid controls intents with a slightly modi-
fied IntentFirewall [5]. Based on these observations, we be-
lieve that the AOSP security extensions are a good starting
point to demonstrate that INTENTSCOPE is general, because
it can effectively work with their policies. In the remainder
of this section, we share our experiences of modeling these
security extensions for intent space analysis. Although we
are not the first to formally model them, we provide the
most accurate models by covering a complete set of intent
attributes and undocumented logic in the security exten-
sions. Unless stated otherwise, the contents in this section
are based on the kitkat-release branch in AOSP.

As shown on the left side of Figure 2, two chains of security
extensions control implicit and explicit intents. We define
two intent spaces: (1) Z; as a six-dimensional implicit intent
space over five intent attributes action, category, scheme,
authority, type and one additional attribute permission;
and (2) Zg as a two-dimensional explicit intent space over
component name and permission. Note that the permis-
sion of an intent is inherited from the app that created the
intent. The chain for implicit intents consists of four security
extensions: protected broadcasts, IntentFirewall, intent fil-
ters, and permissions; and we define their transfer functions
over Iy as Thg, Tiew, Tir, and Thrra. The chain for
explicit intents includes two security extensions: IntentFire-
wall and permissions; and we define their transfer functions
over I as Ty and TEppu-

4.1.1 Intent Filters: T},

An intent filter specifies the implicit intents that it allows
to be forwarded to the next security extension. Therefore,
an intent filter’s output is the intersection of the input in-
tent space and the intent filter’s corresponding intent space.
Suppose a component dst.c in an app dst has an intent fil-
ter filter that describes an intent space i‘}fft‘;. Then, an
intent filter transforms (sre, 1) to (dst,iNi};/;5,). Note that
the transformation is performed on both A and Z. Given
the installed apps on a device as a set A, we combine their
registered intent filters and define 177 as follows:

TIF(m7 2) = {(n7 N Z;‘lilcte?")h N Z?ilcter 75 @’
Ve is a component of n,Vn € A, n # m;i,ifijer C Ir}

Next we explain how we map an intent filter to its intent
space igier. In general, an intent filter accepts an intent
if the intent’s attributes pass a series of tests on the in-
tent filter’s attributes. Therefore, we reduce the problem
of modeling an intent filter to constructing a set of regular
languages which consists of the words that pass each test.

Action Test: An intent passes the action test if the in-
tent’s action matches any action in the intent filter. There-
fore, we map the one or more actions of an intent filter onto
a regular expression that concatenates the escaped action
strings and separates them with the vertical bar character
|, such as VIEW|EDIT. There are two corner cases in this
test. First, zero action in a filter fails the test. Second,
zero action in an implicit intent also fails the test. We cap-
ture both cases with a regular expression [], which denotes
an empty language whose intersection with any language is
empty. Note that the Android documentation is incorrect
with respect to the second corner case: “if an intent does not
specify an action, it will pass the test as long as the filter con-
tains at least one action”. The reason is that queryIntent ()



in the IntentResolver class eventually denies such intents
even though matchAction() in the IntentFilter class al-
lows. Our experiments also confirm this behavior. Inter-
ested readers are referred to the source code®.

Scheme Test: An intent passes the scheme test if the
intent’s scheme matches any scheme in the filter. Therefore,
the regular expression here is constructed in the same way as
the action test, e.g., http|gopher. This test also has unique
cases. First, an intent filter without any scheme still matches
three schemes: content, file, or an empty string. We rep-
resent them with a regular expression file|content|, where
the last | matches the empty string. Second, an intent with-
out any scheme passes the scheme test only if the intent filter
does not specify any scheme. We consider such intents as
intent spaces whose scheme is an empty string.

Authority Test: This test is dependent on the scheme
test. If the intent filter does not specify any scheme, this
test automatically passes regardless of the authority. This
test also passes if the filter does not specify any authority.
Thus, we use .* to match any authority in these two cases.
An intent without any authority passes the test only if the
filter has no authority. We represent such intents with an
empty string at the authority dimension. Otherwise, an in-
tent passes the authority test if its authority matches any
authority in the filter.

Type Test: An intent passes the type test if the intent’s
MIME type matches any type in the filter. The challenge
here is the wildcard character * in MIME type strings. For
example, * and */* match any type; and audio/* matches
any subtype of audio. To maintain the semantics of the
wildcard character, we convert * and */* to .*. The slash
character / is a special character in regular expressions so we
escape it as \/. For example, audio\/.*|video\/mp4 repre-
sents every audio subtype and a single video type. Moreover,
an intent filter that has no type accepts only the intents that
have no type. Therefore, zero type in either the intent or
the filter maps to an empty string.

Category Test: Unlike the other attributes, an intent
can include more than one category. An intent passes the
category test if every category in the intent matches a cate-
gory in the filter, i.e., the intent’s category set is the subset
of the filter’s category set. To capture this logic, we con-
struct a regular language for an intent filter’s categories with
three steps: (1) escape the category strings; (2) concatenate
the escaped strings and separate them with |; and (3) sur-
round the concatenated string with ( and )*. For exam-
ple, the subsets of an intent filter’s category set {DEFAULT,
LAUNCHER, BROWSABLE} are represented with a single regu-
lar expression (DEFAULT|LAUNCHER |BROWSABLE) *. This ex-
pression also matches zero category and duplicate categories
specified in an intent. The other corner cases are similar to
those of the type test. No specification of category in an
intent or a filter maps to an empty string. An intent filter
with no category accepts only the intents with no category.

4.1.2 IntentFirewall: T}, and TE.,

IntentFirewall is a policy-driven MAC framework that
block apps from sending specific intents. The policy files,
located at /data/system/ifw/*.xml, specify a list of fire-
wall filters (fwfilters for short) that describe the implicit or
explicit intents to be blocked for a specific sender app. We
model IntentFirewall as a transformation over Z; or Zg that

Shttps://goo.gl/AlauU5 and https://goo.gl/cdzxg8

subtracts the intent space of each fwfilter from the input
intent space. Suppose a fwfilter that blocks an app src is
represented with an intent space i3y, rizer- Tlew and TE.y
are defined in the same way as follows:

Tipw(a,i) = {(a,i— U TFow pitter) |t — Ui?wfilter # 2,
Vfwfilter that blocks the sender app a;%, %y firter C Z1}

TIEFW(a7 /L) - {(aa 1 — U i?wfilter)‘i - Ui?wfiltcr # ®7
Y fw filter that blocks the sender app a; i, %%y, fiter C Zu}

Next we explain how we construct the intent space @ fu firter
for a fwfilter over the implicit intent space Z; and the ex-
plicit intent space Zg, respectively. In general, we construct
ifwfilter according to IntentFirewall’s two-phase intent at-
tribute matching process.

If a fwfilter is for implicit intents, IntentFirewall first con-
siders the fwfilter as an intent filter and tests the intent at-
tributes with the same tests as we discussed in Section 4.1.1.
We skip modeling this phase for brevity. In the second
phase, IntentFirewall tests the intent attributes with com-
mon string tests, such as isEqual, isStartsWith, isCon-
tained, and matchRegex. Therefore, we model these tests
with their equivalent regular expressions. For example, is-
StartsWith=abc maps to a regular expression abc. *; isCon-
tained=def maps to a regular expression .*def .*. The tests
can be aggregated by computing the intersection of the reg-
ular expressions. For example, two tests isEqual=abc and
isStartsWith=ab map to a regular expression abc.

For a fwfilter that filters explicit intents, we also construct
its intent space in two phases. In the first phase, IntentFire-
wall checks if an explicit intent’s component name matches
the one specified in the fwfilter. Thus, we simply copy
the fwfilter’s escaped component name to the correspond-
ing dimension in %fufiter. There are two corner cases to
be handled. An explicit intent with no component name is
dropped immediately because it resolves to nowhere. A fw-
filter with no component name does not block any explicit
intent. We model the former case with a regular expres-
sion [] and model the latter case with a regular expression
.*. In the second phase, Intent Firewall tests the intent’s
component name with the identical string tests so we do not
rephrase how we model them. Finally, both T}y and Ty,
do not transform an intent space at the permission dimen-
sion because IntentFirewall does not inspect permissions.

Note that IntentFirewall is a relatively new security ex-
tension in AOSP with no official documentation and limited
comments in the code. At first we referred to the unof-
ficial documentation maintained by Yagemann [36] to de-
fine the transfer functions. However, we found unexplained
behaviors of IntentFirewall when we tested IntentFirewall’s
sample policies, which led us to the discovery of the over-
looked second matching phase. In order to obtain an ac-
curate and comprehensive model, we manually derived the
transfer functions presented in this section from IntentFire-
wall’s source code?.

4.1.3  Permissions: THpry and T

Permissions constrain an app’s capability to receive in-
tents from other apps. Suppose an app has a sensitive
component that only accepts the intents from authorized
apps. Then, the app can define a permission and assign it

“https://goo.gl/edzzxL
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to the component, which requires the component’s callers
to hold the exact same permission. If we treat intents as
if they inherit the permissions of their creator/sender apps,
a permission’s role is to forward only the intents that have
matching permissions. Therefore, a permission’s output is
the intersection of the input intent space and the permis-
sion’s own intent space. Note that permissions do not trans-
form on A because the other security extensions have al-
ready resolved the destination app/component. Suppose a
component dst.c is protected by a permission p described
by an intent space ifi’f'c. The transformation is defined as
(dst.c,i) — (dst.c,iMidsic).

We define TE ppas and TEggas as follows:

Trrrm(a,i) = {(a.c,iNig,)|iNic, # <,
Ve is a component of a;

¢ is protected by c.p;i,ic, C Ir}
Trrrm(a 1) = {(a.c,inNigy)|iNic, # 2,
Ve is a component of a;

¢ is protected by c.p;i,ic, C Ip}

Mapping a permission to an intent space i, is straightfor-
ward. The regular language at the permission dimension of
ip is the escaped permission string. A special case is that a
content provider may have separate permissions for reading
and writing. Similar to the action test in intent filters, we
model this case with a regular expression perm_r|perm_w,
based on the fact that an app with either the read or write
permission can access the content provider. The regular
languages at the other dimensions are .*, leaving the intent
space unchanged at these dimensions.

4.1.4 Protected Broadcasts: Tty

Protected broadcasts are a set of implicit intents with
special actions that only the apps whose UIDs are SYSTEM,
BLUETOOTH, PHONE, or SHELL can send. The other apps are
prevented from sending such intents. Similar to IntentFire-
wall, we model protected broadcasts as a space transforma-
tion that subtracts the intent spaces of protected broadcasts
from the input intent space if the input app is not a system-
app. Suppose each protected broadcast maps to an intent
space iprotected. 1hen, we define the transfer function for
protected broadcasts as follows:

TéB(a,i)={ wi

if a is an allowed app

@, — Jiprotected) otherwise

iv 7:protected C II

A list of actions used by protected broadcasts is avail-
able in the Android SDK®. Thus, we build an intent space
iprotected fOr each action by assigning the escaped action
string into the action dimension of the space. The other
dimensions do not involve space transformation and remain
with a regular expression . *.

4.1.5 Composite Transfer Function

As we have defined the transfer function for each individ-
ual security extension, we combine them together to build
the composite transfer function. The composite function
covers two chains of transfer functions for the implicit and

® ANDROID_SDK_ROOT /platforms/android-19/data,/
broadcast_actions.txt

explicit intent space, respectively. To build each chain of
transfer functions, we start from integrating the transfer
functions of those security extensions that restrict an app
from sending intents. Then, the transfer functions of the se-
curity extensions that restrict an app from receiving intents
follow. For the transfer functions defined in this section,
their composite transfer function 7' is defined as:

. Therm(Tie(Tiew (Thp(a,1)))) if i C I;
T(a,i) = . ; ‘ N
Tpprv(Tirw(a,i)) ifi cZg

5. EVALUATION

In this section, we first discuss a prototype implementa-
tion of INTENTSCOPE. We then present the experiments in
which we apply INTENTSCOPE to check intent-based commu-
nication mediated by the AOSP security extensions installed
in commodity Android devices and customized Android OSs.
We conclude with an evaluation of the throughput of our
system.

5.1 Implementation

INTENTSCOPE includes an implementation of the intent
space model, a watchdog app that monitors and incremen-
tally acquires the policies of the AOSP security extensions,
a set of policy parsers that build and compose transfer func-
tions, and a graph builder that converts the composite trans-
fer function into the holistic reachability graph.

The intent space model is built on Augeas Libfa [1], a
native library that supports accurate and fast operations
on regular expressions. In particular, we opt for Hopcroft’s
DFA minimization algorithm [22] to minimize regular ex-
pressions. This algorithm runs in O(nlogn) time in the worst
case, where n is the number of states of a regular expression’s
equivalent DFA. The watchdog app runs as a privileged sys-
tem app. It detects state changes in PMS/AMS triggered
by app installs/uninstalls and re-acquires the intent filters
and permissions, regardless of whether they are statically de-
clared in apps’ manifest or dynamically registered in app’s
code. The watchdog app also fetches the relevant files where
IntentFirewall and protected broadcasts store their policies.
As the operations over intent spaces are both computation
and memory intensive, the parsers and graph builder run on
a dedicated server rather than on the mobile device where
the watchdog app runs.

5.2 Experimental Setup

We evaluated INTENTSCOPE on two Android devices and
four Android-based OSs, as shown in Table 1. The Galaxy
Note ran Samsung’s deeply customized Android (4.4.2), which
pre-installed a large number of Samsung’s apps. The Nexus
4 ran three OSs, including stock Android (5.0), MIUI (4.4.2),
and CyanogenMod (4.4.4). We kept them as they were and
did not install additional apps. In particular, the first two
OSs pre-installed a few proprietary Google-branded apps.
MIUI and CyanogenMod did not include these apps due to
licensing restrictions.

For each OS, we started each installed app and kept it
in the foreground. After the apps were started and Intent-
Scope’s watchdog app did not report any new policy updates
in the latest one minute, we applied INTENTSCOPE to gen-
erate a reachability graph G and two subgraphs G; and G
that respectively represent the holistic forwarding state of
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Table 1: Evaluated Android Devices/OSs and Generated Reachability Graphs

Device os V| el | Coeticient - | Deviation
1 | Samsung Galaxy Note IT | Customized Android 311 S?g:ggg gggi 888’(75
2 Stock Android 108 }gg:zgf 83;8 88(1)3
3] LGE Nexus 4 MIUI v5 104 1938’7177007 8:3;? 8:8(1J3
4 CyanogenMod 11 M12 | 85 ii:igg gzggg 8:81‘;’

Table 2: Apps Ranked by PageRank

Highest in Gy

Lowest in Gp

Highest in Gg

Lowest in Gg

com.viber.voip
1 com.android.contacts
com.android.settings

com.android.proxyhandler
com.monotype.android.font.cooljazz
com.sec.android.provider.badge

com.android.contacts
com.android.phone
com.android.settings

com.sec.enterprise.permissions
com.samsung.android.mdm
com.samung.android.sdk.spenv10

com.google.android.apps.plus
2 com.android.settings
com.google.android.apps.gms

com.android.dreams.basic
com.android.providers.userdictionary
com.android.vpndialogs

com.google.android.setupwizard
com.google.android.apps.plus
com.android.settings

com.android.dreams.basic
com.android.wallpaper

com.google.android.apps.docs.editors.slides

com.android.mms
3 com.android.contacts

com.android.pacprocessor
com.android.sharedstoragebackup

com.android.email
com.android.mms

cm.android.printspooler
com.android.nfc

com.android.settings com.miui.providers.weather

com.android.settings com.android.noisefield

com.android.nfc
com.android.backupconfirm
com.android.sharedstoragebackup

com.android.gallery3d
4 com.android.email
com.android.contacts

com.android.nfc
com.android.incallui
com.android.printspooler

com.android.contacts
com.android.email
com.android.settings

implicit and explicit intents. Each vertex represents an app
identified by its package name rather than UID®. Parallel
edges are allowed and prevalent in the graphs to capture the
multiple entry points of an app.

Table 1 lists the number of vertices, the number of edges
(including parallel edges), and the global clustering coeffi-
cient (measured without parallel edges) of each G and Gg.
A global clustering coefficient is a measure of the degree to
which vertices in a graph tend to cluster together. We opted
for this measure to get a general idea about how freely the
installed apps on a mobile OS are allowed to communicate
with one another. As the clustering coefficient of a clique is
1, the measured values of C¢ indicate that the vertices in
all the graphs are densely connected, which is in line with
our observation that most apps have at least one compo-
nent (the main activity) exposed to other apps. The large
number of edges also implies the complexities of managing
fine-grained policies for intent-based communication.

Given the large number of apps/vertices and edges, pri-
oritizing the apps that expose larger attack surfaces is crit-
ical for efficiently analyzing and resolving policy conflicts
and violations. Therefore, we propose to identify such apps
with PageRank [30]. The underlying intuition is that such
apps are more likely to be accessed by other apps and thus
have more incoming edges, and the apps that have direct
incoming edges from such apps are also likely to be at-
tacked. Table 2 lists the apps in the four mobile OSs with
the highest and lowest rankings. Most of the listed apps are
in line with intuition, such as com.android.settings and
com.android.email. Here we discuss two apps which are
displayed in bold in Table 2. The app com.google.android.
setupwizard is highly ranked because it exports 69 compo-
nents that can be accessed with explicit intents. The app
com.viber.voip is highly ranked because of its 94 intent
filters that expose the components to implicit intents.

S Apps with the same UID are considered as separate apps
but share the permissions of one another [9].

5.3 Experiments

With INTENTSCOPE, checking what intents an app can
send is equivalent to checking the vertex’s outgoing edges
as well as the intent spaces assigned on them. Conversely,
checking what intents an app can receive is equivalent to
checking the incoming edges. In addition, INTENTSCOPE
supports flexible queries backed by regular expressions. Next
we elaborate four experiments in which we leverage the in-
sights provided by INTENTSCOPE to identify potential vul-
nerabilities due to errors in security policies of the AOSP
security extensions.

5.3.1 Zero Permission # Zero Privilege

Enforcing least privilege is a common practice in mobile
security. While recent work [14,27,35] attempts to control
and minimize the set of an app’s granted permissions, we
are interested in another question: what can an app do if
it has mo permissions. In this experiment, we created and
installed such a zero-permission app. We then checked what
components this app can reach with its allowed intents. This
experiment helps a policy analyst reveal the exposed com-
ponents that could possibly be exploited by even a zero-
permission app. If any sensitive components are exposed,
the details of the allowed intents that reach these compo-
nents provide the necessary knowledge for a policy analyst
to create precise policies that protect them. We find that
zero permission does not necessarily mean zero privilege as
users might expect. Table 3 shows the number of the zero-
permission app’s reachable apps (i.e. out-neighbors) and its
local clustering coefficient.

The flexible queries supported by INTENTSCOPE also allow
a policy analyst to pinpoint the intents that have interest-
ing semantics. In the Galaxy Note, we found that this zero-
permission app can send implicit intents that contain an in-
teresting scheme called android_secret_code. For example,
one of the reachable apps is com.sec.android. app.wlantest,
which accepts intents with an action android.provider.
Telephony.SECRET_CODE, an authority of 526, and a scheme



Table 3: Reachability of a Zero-Permission App

# Outgoing | # Reachable | Local Clustering

Edges Apps Coefficient
1 2,767 241 0.943
3,072 263 0.968
. 1,443 77 0.905
1,280 92 0.960
3 955 79 0.927
1,142 90 0.968
4 454 62 0.914
557 72 0.961

of android_secret_code. Another reachable app com.
wssyncmldm is a sensitive app that can silently download
and install apps. Therefore, an app with no permissions
could exploit a vulnerability in this app in order to down-
load and install apps, thus escalating the privilege of the
zero-permission app without exploiting the underlying OS.
We also found that a recent attack [31] is applicable here,
where a malformed intent sent from a zero-permission app
can exploit and take over the exposed sensitive app.

5.3.2  Fine-grained Domain Isolation

Chin et al. [13] presents a limitation of intent-based com-
munication. Suppose a malicious app Mallory attempts to
attack a legitimate and sensitive app Alice and existing poli-
cies prevent their direct communication. The limitation al-
lows Mallory to eavesdrop the intents from Alice to Bob and
allows Mallory to send spoofed intents to Alice. This situa-
tion calls for a fine-grained domain isolation model that not
only considers apps but also includes intents. INTENTSCOPE
is useful as it provides insights about intents.

Specifically, two apps are not isolated with respect to
eavesdropping attacks if they share in-neighbors and incom-
ing intents in the reachability graph. They are not isolated
with respect to spoofing attacks if they share out-neighbors
and outgoing intents. Thus, INTENTSCOPE guarantees in-
tent isolation between two apps if: (1) the apps are not
neighbors of each other; and (2) the intent spaces of their
incoming edges from common in-neighbors do not intersect;
and (3) the intent spaces of their outgoing edges to common
out-neighbors do not intersect.

As a case study, we checked the intent isolation between
two apps in the Galaxy Note: com.android.externalstorage
and com.fmm.dm. The former is an Android system app. The
latter is believed to be bloatware as reported on several on-
line forums. INTENTSCOPE reported that the intent spaces
do not intersect, which implies that no app steals any intent
from the other. However, these two apps share 242 com-
mon out-neighbors and the intersection of the intent spaces
is not empty (see Figure 3(a)). Therefore, these apps are
still susceptible to spoofing attacks.

5.3.3 Enumerating Multi-app Workflows

In modern mobile operating systems, it is common for a
user to orchestrate multiple apps for a large and user-defined
task. For example, a user may streamline a workflow of
downloading, viewing, editing, and sending a picture with
a chain of apps. Under the hood of Android, a multi-app
workflow is implemented as a calling sequence of intents.
While controlling such workflows has been well covered by
Aquifer [26], INTENTSCOPE provides clues for a policy ad-

ministrator to create precise rules that can be enforced by
Aquifer and similar access control systems.

In this experiment, we applied INTENTSCOPE to enumer-
ate the workflows in MIUI that match the aforementioned
example. Specifically, we started from an app com.android.
providers.downloads, which manages downloaded files. We
then performed a breath-first search on the reachability graph
for a sequence of implicit intents as follows:

1. action=android.intent.action.VIEW, scheme=content,

category=android.intent.category.BROWSABLE;
2. action=android.intent.action.EDIT, type=image/*;
3. action=android.intent.action.SEND, type=image/*.

Figure 3(b) shows the matching workflows that start from
the cyan node. The grey nodes are the first hop; the purple
nodes in the middle are the second hop. Note that the purple
nodes also serve as the first hop because the photo editors
can also handle the VIEW action. The yellow nodes represent
the last hop where data may leave a mobile device via emails,
Bluetooth, or MMS messages.

5.3.4 Discovering Permission Re-Delegation Paths

A zero-permission app may send an intent to a privi-
leged app, thus delegating the privileged app to perform
permission-protected tasks for it [19]. In other words, per-
mission re-delegation happens when apps with respective
permission sets communicate with each other with intents.
Under this definition, existing work [10,19] detects and mit-
igates permission re-delegation attempts at runtime. One
step further, we expect to enable a policy analyst to get in-
sights into potential permission re-delegation paths before
apps may execute. Meanwhile, the intents used along re-
delegation paths provide semantics for the policy analyst to
make informed decisions and take precise actions against the
privileged apps that could be abused.

We propose to use connected subgraphs to represent per-
mission re-delegation paths in a reachability graph. A sub-
graph is connected if every pair of its vertices has a path
that consists of only the vertices in the subgraph. This is
analogous to the situation where multiple apps collude but
cannot relay their communication via other apps. We define
the problem of discovering re-delegation paths as follows:
given a set of critical permissions denoted as C'P, find all
the connected subgraphs of & vertices that satisfy:

e Each app (vertex) holds at least one permission but
not all the permissions in C'P; and

e The union of the apps’ permissions is a superset of C'P.

The best algorithm we found to generate connected sub-
graphs of k vertices is ConSubG(G, k) [24], whose worst-
case time complexity is exponential in k. The performance
of this algorithm is generally acceptable because we rarely
encounter cases where more than five apps collude.

We targeted the third-party apps installed on the Galaxy
Note and set k = 3. We attempted to create a synthetic at-
tack where apps collude to drain the battery with a critical
permission set of three permissions: BLUETOOTH_ADMIN, NFC,
and FLASHLIGHT. Our results show 6 groups of apps (trian-
gles) that can possibly collude to cover the critical permis-
sions. In particular, the two apps in the center respectively
hold FLASHLIGHT and NFC, while the surrounding six apps
hold BLUETOOTH_ADMIN (see Figure 3(c)). After the groups



Table 4: System Throughput

|Ex| Avg. Time (s) | StdDev (s) | # edges/sec |Eg| Avg. Time (s) | StdDev (s) | # edges/sec
1 800,456 302.05 5.73 2,915 979,993 115.57 2.02 8,454
2 155,369 70.08 3.02 2,217 138,651 21.59 0.74 6,422
3 99,170 38.69 0.92 2,563 118,707 16.92 1.02 7,014
4 38,606 15.63 1.00 2,469 47,458 6.77 0.45 7,013
Average 2,541 7,225
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Figure 3: Experimental Results
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are identified, a security analyst can further look into the
apps for colluding behaviors with static or dynamic analy-
sis. On the contrary, a user can eliminate colluding attacks
by placing the apps into separate domains.

Even though the discovered eight apps are mostly down-
loaded and seem to be trusted by general users, they may
carry third-party libraries or vulnerable components that
are exploitable by other apps. In other words, they may not
deliberately collude, but could be exploited by other apps
to acquire privileges. The analysis discussed in this exper-
iment can be combined with the other analyses (e.g. zero-
permission apps) to further generate knowledge for a policy
analyst to take precautions before real exploits occur.

5.4 System Throughput

To understand the performance of INTENTSCOPE, we per-
formed a microbenchmark to evaluate the number of edges
that INTENTSCOPE can check in a second. Given that check-
ing an edge is done by testing whether the intersection of the
edge’s intent space and a given intent space is empty, this
benchmark also implies the throughput of INTENTSCOPE in
terms of processing intent spaces. In the benchmark, we
used the following two intent spaces to evaluate the through-
put of implicit intents and explicit intents, respectively. Note
that the intersection of an implicit intent space and an ex-
plicit intent space is always empty and thus not evaluated.

e j;: action=android\.intent\.action\.EDIT,
category=android\.intent\.category\.DEFAULT,
scheme=http, authority=\d+, type=mpeg,
permission=. *;

e ip: component=com\.sec\..*, permission=.*.

We performed the benchmark in a Xen VM running Ubuntu
14.04 with Intel Xeon E5620 2.4GHz and 8GB of RAM. Only
one core was used during the benchmark. Table 4 shows the
average results of 10 runs. It took approximately 5 minutes
to check the customized Android OS of the Galaxy Note
loaded with 311 apps, and less than 1 minute to check the
others. In general, the processing time is proportional to the
number of edges. As shown in Table 4, INTENTSCOPE pro-
cessed 2,541 implicit intent spaces and 7,225 explicit intent
spaces in a second. While explicit intent spaces were almost
three times faster than implicit intent spaces, we note that
an explicit intent spaces has only two dimensions and an
implicit intent space has six dimensions.

6. DISCUSSION

Policy analysis and app analysis. In terms of provid-
ing insights for configuring security extensions, our intent
space based policy analysis complements existing static and
dynamic app analysis. We make this argument based on
the fact that an app’s runtime behaviors on a specific mo-
bile device are shaped by (1) the app whose code specifies



its executional semantics; and (2) the security extensions
whose policies specify how the app’s specific behaviors are
restricted. While we admit that app analysis is indispens-
able, we also note the alarming trend of malware thwarting
app analysis. For example, code obfuscation and encryption
hide an app’s true semantics from static analysis. “Split per-
sonalities” in apps [8,23] make malware appear innocent by
detecting and evading dynamic analysis tools. To get an up-
per hand against adversaries, we would need policy analysis
to orchestrate security extensions.

Generality of intent space analysis. While we pre-
sented intent space analysis for checking intent-based com-
munication, the underlying methodology is beyond the scope
of intents and generally applicable to other security exten-
sions. A promising target is SE Android [32], which con-
trols almost every inter-application communication mecha-
nism other than intent-based communication. Specifically,
it checks an attribute called security contexrt when an app re-
quests to access files, sockets and so on. Given that security
contexts and intent attributes are essentially access control
labels [16], we foresee that our intent space analysis can be
extended to a “context space analysis” for SE Android. We
will extend our framework to reason about SE Android poli-
cies and further maximize the coverage of inter-application
communication. However, we also admit the limitation that
the current intent space analysis cannot directly work with
existing context-aware security extensions. As for future
work, we shall map contexts into dynamic policy and pro-
vide support for such extensions.

Usability of the holistic reachability graph. As
we focused on developing the intent space model and im-
plementing a prototype of INTENTSCOPE, usability of the
reachability graph was not the primary goal. Indeed, pol-
icy verification is a complicated task because the number
of apps and the allowed intents among them can be quite
large. However, policy management is inevitable to validate
policy-driven security extensions. INTENTSCOPE attempts
to reduce the burden on policy analysts by helping them in-
tuitively perform intent-based communication analysis and
utilize flexible queries. Moreover, we believe that the usabil-
ity of the graph has a lot of space to improve and indeed this
is an important research challenge to explore. For example,
the more interactive visualization may assist a security an-
alyst in understanding the inter-application communication
and in ultimately developing a robust security policy.

7. RELATED WORK

Static and dynamic app analysis. App-oriented anal-
ysis provides insights for a policy analyst to create appro-
priate security policies. ComDroid [13] is the first work
that discusses the intent-based attack surfaces and discov-
ers vulnerable components mistakenly exported by apps.
CHEX [25] is also built on static analysis that comprehen-
sively discovers vulnerable ICC entry points in addition to
just exported components. Epice [28] checks ICC vulnera-
bilities based on a sound and detailed ICC model and scales
well. AmanDroid [34], FlowDroid [6], and DroidSafe [20]
statically discover information flows that potentially leak
sensitive data. Elish et al. [17] statically reconstruct in-
tents among apps to detect collusion. Beyond static analy-
sis, dynamic runtime solutions reveal how apps communicate
through intents in real time. IPC Inspection [19] automati-
cally reduces an intent sender’s effective permissions to mit-
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igate unauthorized privilege escalations. QUIRE [15] pro-
vides provenance of intents so that a callee can track down
the original caller. XManDroid [10] maintains a system-
centric call graph for the intents that have been sent and
received. TaintDroid [18] and VetDroid [37] track sensi-
tive data shared among apps with dynamic taint analysis.
Along these lines, our intent space analysis assists policy an-
alysts by systematically analyzing how security extensions
confine apps’ behaviors. Its analysis is based on a holistic
call graph and data-flow graph derived from the intent for-
warding states of security extensions in an Android device.

Experimental security extensions for Android: Be-
sides intent filters, permissions, IntentFirewall, and protected
broadcasts covered in this work, previous research has pro-
posed a series of experimental security extensions for An-
droid. Saint [29] and TISSA [38] support policy-driven ac-
cess control for intents. CRePe [14] and APEX [27] enable
context-aware and fine-grained permissions. FlaskDroid [12]
and SE Android [32] are generic and flexible MAC systems
that provide comprehensive protection on both Android’s
middleware and kernel layers. Aquifer [26] enforces dis-
tributed information flow control over intent-based UI work-
flows. Android Security Module (ASM) [21] and Android
Security Framework (ASF) [7] provide programmable inter-
faces that promote the creation of customized security ex-
tensions. INTENTSCOPE facilitates defining and verifying se-
curity policies for these security extensions. It is especially
useful for ASM and ASF that may host security extensions
from multiple stakeholders.

8. CONCLUSION

In this paper, we have presented intent space analysis for
intent-based communication. Intent space analysis is based
on an intent space model and a systematic policy checking
framework called INTENTSCOPE. The intent space model
maps a security extension’s functionality of forwarding in-
tents as transformation on a geometric space. Based on the
intent space model, INTENTSCOPE acquires the live states
of multiple security extensions and further derives a holistic
view that supports formal verification. Also we have de-
scribed a prototype implementation, along with extensive
evaluation results of our approach.
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