
Mitigating Threats Emerging from the Interaction between SDN
Apps and SDN (Configuration) Datastore
Sana Habib

Arizona State University

shabib3@asu.edu

Tiffany Bao

Arizona State University

tbao@asu.edu

Yan Shoshitaishvili

Arizona State University

yans@asu.edu

Adam Doupé

Arizona State University

doupe@asu.edu

ABSTRACT
Software-defined networking (SDN) has established itself in net-

working and standardization efforts are under way to strengthen

the next generation of this essential technology. The Network Man-

agement Datastore Architecture (NMDA), RFC 8342, is the notable

achievement in this regard, which standardizes the two vital SDN

datastores: configuration and operational. Even though the config-

uration datastore itself has been standardized, the guidelines for

addressing its security as well as safeguarding interactions between

SDN apps and SDN configuration datastore are hazy, which leaves

room for security vulnerabilities. Both industry and academia have

realized the threats that arise due to the interactions between SDN

apps and the SDN configuration datastore. But, to date only partial

solutions exist for the problem.

In this paper, we focus on mitigating such threats by proposing

four security design principles that we believe should be uniformly

used across all SDN platforms: (i) authentication (of SDN apps), (ii)

authorization (of SDN apps), (iii) accountability (of SDN apps), (iv)

real-time conflict detection and resolution of configuration rules

(belonging to the same/different SDN app/s). Based on these four

security design principles, we develop and present a prototype

implementation of the Eirene framework, an open-source vendor

independent system for ensuring secure interactions between SDN

apps-SDN configuration datastore. We then evaluate the security of

the Eirene framework using two datasets: (i) real-world complicated

cases of rule conflicts, (ii) 50,000+ real-world configuration (attack)

rules. We believe that this work, by quantifying the security design

principles for the next generation of SDN apps-SDN configuration

datastore interactions, will assist in reaping the true benefits of the

SDN powerhouse and ultimately inspire movements in the future

generation of this critical technology.

CCS CONCEPTS
• Security and privacy Ñ Security services;Access control; Informa-
tion accountability and usage control; Authorization; Authentication.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCSW ’22, November 7, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/22/11. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

KEYWORDS
Software Defined Networking (SDN); SDNConfiguration Datastore;

SDN Apps; Configuration Rules.

ACM Reference Format:
Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé. 2022. Mit-

igating Threats Emerging from the Interaction between SDN Apps and

SDN (Configuration) Datastore. In Proceedings of the 2022 Cloud Computing
Security Workshop (CCSW’22), November 7, 2022, Los Angeles, CA, USA.ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION: FUTURE OF NETWORKS
The SDN technology is considered one of the most disruptive tech-

nologies to networking that we have seen in decades. By making

networks programmable and automated, SDN has redefined the

future of networking. This is one of the reasons that the global SDN

market value continues to grow, from around USD 13.7 billion in

2020 to approximately USD 32.7 billion by 2025 and to almost USD

117.27 billion by 2030 [4, 5]. SDN, almost 13 years old now, is ma-

ture with a standardized architecture (RFC 7426 [29]) that provides

guidelines to vendors and enterprises for developing their own SDN

solutions [5] (e.g., Hewlett Packard Enterprise Development [9],

Huawei Technologies [11], Nokia Corporation [12]).

The SDN datastores are a vital entity in the overall SDN architec-

ture, which store information about the desired and current state

of the network. The Network Management Datastore Architecture

(NMDA), standardized as RFC 8342 [50] in 2018, provides guide-

lines to enterprises who develop their own SDN controllers such

as OpenDayLight (ODL) [15], Open Network Operating System

(ONOS) [13], Ericsson Cloud SDN [7], FloodLight [8], etc.

The NMDA design specifies two key datastores [50]: (i) Configu-

ration datastore, which contains the desired state of the network.

(ii) Operational datastore, which contains the actual state of the

network. The desired state of the network is defined as policies,

converted into configuration rules, and then entered in the SDN

configuration datastore by SDN apps or by the network adminis-

trator via the northbound API. Proper management of information

inside the configuration datastore is crucial as it is translated into

the network. The operational datastore contains statistics about the

network. In this paper, we focus on mitigating the threats that arise

due to the interaction between SDN apps and the SDN configura-

tion datastore (a subset of these threats are summarized in Table 1).

The root cause of these threats lies in the obscurity of universal de-

sign principles to be used across all SDN platforms for safeguarding

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

interactions between SDN apps and the SDN configuration datas-

tore. For example, missing or poorly implemented authentication

scheme for SDN apps can give a malicious SDN app access to the

configuration datastore. The malicious SDN app can then hinder

the smooth operation of the network by fraudulently inserting

rules that tamper with the security policies of the network, exhaust

datastore resources, etc. Similarly, missing or poorly implemented

authorization can cause an SDN app to escalate its privileges and

use more than its rightful or authorized share of datastore resources.

Absence of or improperly implemented accountability causes a simi-

lar problem (i.e., one SDN app using more than its rightful share and

depriving other legitimate SDN apps). Finally, absence of real-time

conflict detection and resolution of configuration rules belonging

to same/different SDN app/s can lead to misconfigurations in the

datastore and consequently in the network.

Both industry and academia have partially realized this prob-

lem and proposed temporary solutions and services (such as SE-

FloodLight [46], ODL AAA [14], ONOS AAA [6], SM-ONOS [57]).

However, to date the security design principles for safeguarding in-

teractions between SDN apps and SDN configuration datastore that

could be uniformly used as a guideline across all SDN platforms are

yet to be quantified. One of the reasons behind the understudied

problem of securing the interaction between SDN apps and the

SDN configuration datastore is the fast paced nature of industry,

where new version of SDN controllers (such as ODL [15]) are rolled

out quarterly and more time and energy is spent on the correct

operation of the controller than its security. Even when the secu-

rity issues are raised, the developers in industry use temporary

fixes to deal with the problem and the underlying issues remain

unaddressed. Realizing this need, this paper makes the following

contributions:

(1) We quantify four security design principles to be uniformly

used across multiple SDN platforms for mitigating threats

that arise from the interactions between SDN apps and the

SDN configuration datastore: (i) authentication of SDN apps,

(ii) authorization of SDN apps, (iii) accountability of SDN

apps, (iv) real-time conflict handling (detection and reso-

lution) of configuration rules among different/same SDN

app/s.

(2) Based on this quantification, we present a prototype imple-

mentation of the Eirene framework, which is an open-source

vendor independent Authentication, Authorization, Account-

ability, and Conflict Handling (AAAC) service that can be

used across multiple SDN platforms (with varying imple-

mentation details).

(3) We test the security of the Eirene framework on a small and a

large scale using two real-world datasets (i) dataset contain-

ing real-world complicated cases of rule conflicts, (ii) 50,000+

real-world configuration (attack) rules, and demonstrate that

the desired security goals are achieved with an acceptable

performance overhead.

The accomplishment of this work required overcoming two key

challenges. The first challenge was extracting security design prin-

ciples that should be uniformly used across all SDN platforms. We

did that by first defining our threat model, then categorizing the

threats that emerge from the interaction between SDN apps and

Table 1: Motivating Threats.

Attack Title Year Security Issue/CVE

1. Unauthenticated Upload [1] 2017 CVE-2017-1000081

2. Cross-App Poisoning [53] 2018 Privilege Escalation

3. DoS [30] 2018 CVE-2017-1000411

4. Mis-configurations [2] 2018 Rule Database Inconsistency

5. Rule Conflicts [2] 2018 Rule Database Inconsistency

6. Fraudulent Rule Insertion [2] 2018 Rule Database Tampering

SDN configuration datastore. Following that, we synthesized and

examined existing security services/solutions offered by industry

based SDN controllers/academia against the extent to which they

address and mitigate the problem. Once the security design prin-

ciples were quantified, we designed and developed a prototype

implementation of the Eirene framework on a widely used industry

based open-source SDN controller, OpenDayLight (ODL) [15]. The

second challenge was obtaining real-world datasets for testing the

Eirene framework. This problem was solved using a real-world

campus network dataset for small scale and 50,000+ configuration

(attack) rules from [30] for large scale security evaluation of the

Eirene framework.

2 BACKGROUND
This section provides the necessary background on SDN architec-

ture. Fig. 1 graphically shows the SDN architecture.

2.1 SDN Architecture: The Nits and Grits
SDN has a centralized architecture that decouples the control plane

(i.e., forwarding decisions) from the data plane (i.e., forwarding

traffic). The centralized controller exposes an application program-

ming interface (APIs) to (first- or third-party) apps, which is referred

to as the northbound API. The northbound SDN apps define net-

work policies in the form of forwarding rules that are stored inside

the controller (configuration) datastore. These policies are then

enforced by the controller in the data plane. The four main compo-

nents of SDN architecture: (i) SDN controller, (ii) northbound and

southbound APIs, (iii) core services, (iv) datastores, are discussed

next.

2.1.1 SDN Controller. The controller can be thought of as a “net-

work operating system” that centralizes control in a logically cen-

tralized control plane, which is responsible for servicing north-

bound SDN apps, provisioning resources to SDN apps, and enforc-

ing policies (for security, traffic engineering, etc.) [35]. OpenDay-

Light (ODL) [15] and Open Network Operating System (ONOS)

[13] are the two most widely used open-source SDN controllers.

2.1.2 Northbound and Southbound API. SDN apps interact with the

controller via the northbound API. There is no standard northbound

API or unified controller-to-app interface among different SDN

frameworks. Applications can either be implemented as internal
modules within the controller or as external processes decoupled
from the controller. The SDN controller interacts with the network

via the southbound API. The most commonly used protocol for

southbound communication is OpenFlow [40].

2.1.3 Core Services. The core services inside the controller are

responsible for reading, writing, modifying, and deleting data from

the datastores. For example, SAL Add-flow service is responsible

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

Figure 1: SDN Architecture. (i) An SDN app requests a configuration rule insertion/deletion in/from the configuration datastore
via the northbound API. (ii) The request is met using core services in the configuration datastore. (iii) Configuration rules
are executed in the network via southbound interface. (iv) The information about network traffic statistics is stored in the
operational datastore using core services. (v) SDN apps can read operational statistics from operational datastore via the
northbound API.

for adding configuration rules to the configuration datastore. Flow
programmer is the service responsible for adding configuration

rules in switches (via the southbound API). OpenFlow Plugin adds

the rules to the operational datastore.

2.1.4 Datastores. The Network Management Datastore Architec-

ture (NMDA) is the standard datastore architecture used by most

SDN controllers [50]. It specifies two datastores: configuration and

operational. The configuration datastore is a read and write data-

store that contains aspirations about the network (i.e., the con-

troller’s desired state of the network). The operational datastore

is a read only datastore that contains truth about the state of the

network. SDN apps, via the northbound interface, can read, write,

modify, and delete configuration rules inside the SDN configura-

tion datastore. These configuration rules are later enforced in the

network via the southbound interface. The network statistics are

collected via the southbound interface and stored inside the opera-

tional datastore.

3 THREAT MODEL: MOTIVATING THREATS
In our threat model, we assume that the northbound channel (i.e.,

connection between a controller and SDN apps) is secure using

HTTPS, etc. We assume the southbound channel (i.e., communi-

cation channel between a controller and network) is secure using

OpenFlow, SSL, TLS, etc. We consider any interaction that an ex-

ternal entity (such as an SDN app) can make with the SDN configu-

ration datastore as a threat. Consequently, we study four types of

threats that arise due to the interaction between SDN apps and the

SDN configuration datastore.

3.0.1 Threat 1 – Malicious SDN apps. The SDN apps establish a

communication channel with the SDN configuration datastore prior

to using the datastore resources. Dixit et al. [30] showed that two

industry-based open-source SDN controllers (ODL and ONOS) do

not inherently require authentication of SDN apps, which enables

unauthenticated/malicious SDN apps to access the SDN config-

uration datastore, and tamper with the smooth operation of the

network by messing with the existing rule database or exhausting

the controller datastore resources or storing mutated configura-

tions, etc. Both ODL and ONOS have realized this problem and

ODL AAA [14] and ONOS AAA [6] aim to address and mitigate

this issue. However, this security principle of authentication of SDN

apps is yet to be quantified so that it is used uniformly across all

SDN platforms.

3.0.2 Threat 2 – Privilege Escalation. The SDN apps interact with

the SDN controller regarding the percentage capacity of configu-

ration datastore that they are authorized to use. Dixit et al. [30]

showed that two industry-based open-source controllers (ODL and

ONOS) do not inherently authorize SDN apps to use a certain

percentage of datastore resources. In the absence of proper autho-

rization, an SDN app can raise its privilege and use more than its

authorized share of datastore resources. Both ODL and ONOS later

addressed this issue with their ODL AAA [14] and ONOS AAA

[6]/SM-ONOS [57] services respectively. However, both ODL AAA

and ONOS AAA/SM-ONOS do not cater for varying SDN app traf-

fic and consequently varying network traffic in the case of small,

medium, large, special purpose networks (Table 2). Again, the secu-

rity design principle of authorization is yet to be quantified so that

it can be uniformly used across all SDN platforms.

3.0.3 Threat 3 – Controller Overload. Ensuring that the SDN apps

are not using more than their rightful authorized share of datastore

resources require an accountability mechanism that dynamically

updates each SDN apps’ storage capacity after every rule inser-

tion/deletion. Dixit et al. [30] showed an absence of such a mech-

anism for two SDN controllers (ODL and ONOS), which resulted

in exhausting the configuration datastore resources and making

the controller unavailable for further use. Both ODL AAA [14]

and ONOS AAA/SM-ONOS [3, 57] have realized this problem but

proposed partial accountability solutions with missing details on

datastore capacity updates and testing of accountability function.

Again, this security design principle of accountability is yet to be

quantified so that it can be used across all SDN vendors.

3.0.4 Threat 4 – Information Inconsistency. Inconsistent informa-

tion inside the configuration datastore leads to policy and configu-

ration vulnerabilities, misconfigurations, and, in combination with

missing authentication can lead to fraudulent rule insertion by a

malicious SDN app [2]. The misconfigurations in the network can

be intentional (by a malicious SDN app) or unintentional (due to

conflicts among configuration rules entered by diverse SDN apps).

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

Table 2: Assessment of SDN Platforms for their Coverage on Mitigation Strategies for Threats 1, 2, 3, & 4.

SDN Controller Baseline Security Service Mitigation Strategy

(Threat 1)

Mitigation Strategy

(Threat 2)

Mitigation Strategy

(Threat 3)

Mitigation Strategy

(Threat 4)

1. FloodLight SE-FloodLight [46] Covered Partly Covered Partly Covered Partly Covered

2. OpenDayLight (ODL) ODL AAA [14] Covered Partly Covered Partly Covered Not Covered

3. Open Network Operating System ONOS AAA [3] Covered Missing Details Missing Details Not Covered

(ONOS) SM-ONOS [57] Not Covered Partly Covered Not Covered Partly Covered

4. Ericsson Cloud SDN [7] ODL AAA [14] Covered Partly Covered Partly Covered Not Covered

5. Huawei Agile [10] ODL/ONOS AAA Covered Partly Covered Partly Covered Not Covered

6. Open Networking Platform ODL AAA [14] Covered Partly Covered Partly Covered Not Covered

OpenDayLight (ODL) Eirene Covered Covered Covered Covered

We study the problem of inconsistent information in the SDN con-

figuration datastore using four types of real-world complicated

cases of rule conflicts.

(i) Duplicate rules (i.e., the rules belonging to Traffic Engineering

(TE) and Load Balancer (LB) in Table 3). The duplicate rules match

on all six fields that are source port, destination port, source IP,

destination IP, priority, and action. The presence of duplicate rules,

belonging to TE and LB, in the SDN configuration datastore can

create confusion about the ownership of rules as well as damage

rule database consistency. For example, if either one of the SDN

apps (i.e., TE or LB) deletes the duplicate rule from the configuration

datastore, it is kept and obeyed in the network due to the other

SDN app (i.e., TE or LB).

(ii) Rules conflicting on priority and action (i.e., the rule belonging
to FireWall (FW), which conflicts on priority and action with TE and

LB in Table 3). The presence of FW’s rule creates conflict in the

rule database. Now, how to resolve this conflict? Should rule-based

priority be used or another level of SDN app priority be used as

FW rules usually supersede TE or LB.

(iii) Rules conflicting on priority (i.e., ARP proxy (ARP) rule, which
conflicts on priority with FW and on priority and action with TE

& LB in Table 3). These conflicts need to be resolved. (iv) Rules
conflicting on action (i.e., Learning Switch (LS) rule that conflicts
on action with ARP, on priority with TE & LB, and on priority and
action with FW).

Such rule conflicts must be resolved so that the network operates

in an intended manner and save the network administrator from

hours of manual effort to debug any undesired behavior/traffic that

may result from unresolved rule conflicts. The issue of detecting

and handling rule conflicts in switch’s TCAM table have been partly

addressed by the SE-FloodLight [46] and SM-ONOS [57] service. At

the time of this writing, there is no formal documentation regarding

addressing rule conflicts in the SDN configuration datastore that

could be uniformly used across all SDN platforms.

4 THE PROBLEM: OBSCURITY
Due to obscure definition of security design principles for safe-

guarding interactions between SDN apps and the SDN configu-

ration datastore, the industry-based efforts have been unguided.

Table 2 summarizes the extent to which mitigation strategies for

the four threats emerging from the interactions between SDN apps-

SDN configuration datastore have been addressed by multiple SDN

platforms.

Refer to OpenDayLight (ODL) row in Table 2. The ODL AAA

[14] service covers authentication of SDN apps so that only au-

thenticated SDN apps are allowed access to the SDN configuration

Table 3: Rule Conflicts.
(Keys: Src Ñ source, Dst Ñ Destination, Prt Ñ Priority.)

SDN Apps Src Port Dst Port Src IP Dst IP Prt Action

TE 1212 1234 10.0.0.1{23 10.0.0.2{23 1000 Allow

LB 1212 1234 10.0.0.1{23 10.0.0.2{23 1000 Allow

FW 1212 1234 10.0.0.1{23 10.0.0.2{23 500 Deny

ARP 1212 1234 10.0.0.1{23 10.0.0.2{23 200 Deny

LS 1212 1234 10.0.0.1{23 10.0.0.2{23 200 Allow

datastore; thus, the mitigation scheme for threat 1 is marked as

covered. The ODL AAA [14] has an authorization function that au-

thorizes SDN apps to use a certain percentage of SDN configuration

datastore resources but does not cater for varying SDN app traffic

and consequently changing network traffic requirements; thus, mit-

igation strategy for threat 2 is marked as partly covered. The ODL

AAA [14] partly mitigates threat 3 by having an accountability

part that keeps track of the API calls by an SDN app, the sessions

maintained, etc.; but the exact details on how the configuration

datastore capacity is allocated to an SDN app and updated with

every configuration rule addition/deletion is missing. Thus, the mit-

igation scheme for threat 3 is marked as partly covered. Finally, the

ODL AAA [14] service does not handle and resolve conflicts that

arise among configuration rules belonging to the same/different

SDN app/s in the datastore. Thus, mitigation scheme for threat 4 is

marked as not covered in the ODL AAA [14] row of Table 2. The

security assessment for other SDN platforms in Table 2 follow suit.

From Table 2, there is a lack of a baseline security service that

completely addresses and proposes mitigation strategies for all

four threats emerging from SDN apps-SDN configuration datastore

interaction. The Eirene framework, based on four security design

principles of AAAC, implemented and tested on ODL controller,

addresses, and mitigates all four threats to ensure safe SDN apps-

SDN configuration datastore interactions.

5 RELATEDWORK
Table 4 performs an assessment of notable academic efforts with

respect to their completeness in covering mitigation strategies for

threats 1, 2, 3, 4; and the assessment scale consists of three levels:

covered (if the mitigation strategy for the respective threat has been

covered with respect to SDN apps-SDN configuration datastore),

partly covered (if the mitigation strategy has been covered with

respect to the interaction between some other SDN components

but can be extended to SDN apps-SDN configuration datastore in-

teraction OR mitigation strategy has been covered but with missing

details), and not covered (if the mitigation strategy for a particular

threat has not been covered).

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

Table 4: Assessment of Notable Academic Efforts for their Coverage on Mitigation Strategies for Threats 1, 2, 3, & 4.

Year Baseline Security Service Proposed Approach Threat 1

Mitigation

Threat 2

Mitigation

Threat 3

Mitigation

Threat 4

Mitigation

2015 1. Secure Northbound Interface [22] Trust Manager, Permission based Access Control Covered Partly Covered Partly Covered Not Covered

2. Oktian et al. [42] Token Authentication for Application & User Partly Covered Not Covered Not Covered Not Covered

3. Floodguard [54] Proactive Flow Rule Analyzer Not Covered Not Covered Partly Covered Not Covered

2016 1. AuthFlow [39] Host & Credential-based Authentication Partly Covered Partly Covered Partly Covered Not Covered

2. Fast Authentication Scheme [31] Weighted Secure Context Information (SCI) Transfer Partly Covered Not Covered Not Covered Not Covered

3. AEGIS [44] Dynamic Access Control Not Covered Partly Covered Partly Covered Not Covered

4. State-based Permission [41] Permission Structure Not Covered Partly Covered Not Covered Not Covered

5. SDNShield [55] Permission Structure Not Covered Partly Covered Not Covered Partly Covered

6. Lee et al. [38] Permission Structure Not Covered Partly Covered Not Covered Not Covered

7. SDNsec [48] Symmetric Key Cryptography Not Covered Partly Covered Partly Covered Not Covered

2017 1. Application Authentication System [27] Permission Authentication Partly Covered Partly Covered Partly Covered Partly Covered

2. Controller DAC [52] Permission Structure, Dynamic Access Control Not Covered Partly Covered Partly Covered Not Covered

3. HanGuard [28] Trust Model Partly Covered Partly Covered Not Covered Not Covered

4. Brew [45] Detecting & Resolving Cross-layer Conflicts, Flow

Rule Conflicts

Not Covered Not Covered Not Covered Partly Covered

2018 1. PROVSDN [53] Data Provenance Not Covered Partly Covered Not Covered Not Covered

2. OAuthkeeper [43] REST Access Parameter Conflict Algorithm Not Covered Partly Covered Not Covered Partly Covered

3. Synaptic [49] Formal checker for SDN-based Security Policies Not Covered Not Covered Not Covered Partly Covered

4. Fine-grained Permission Management

System [58]

User Isolation, Three level Permission Abstraction Not Covered Partly Covered Not Covered Not Covered

5. BENBI [56] Scalable & Dynamic Access Control using Broadcast

Encryption

Partly Covered Partly Covered Partly Covered Not Covered

6. SecSDN-cloud [16] User Authentication, Third-party Monitoring Partly Covered Not Covered Partly Covered Not Covered

2019 1. THP (The Hidden Pattern) [32] Graphics Password + Digital Challenge Partly Covered Not Covered Not Covered Not Covered

2. SDN-RBAC [17] Formal Role-based Access Control Model Not Covered Partly Covered Not Covered Not Covered

3. Controller Oblivious Dynamic Access

Control [33]

Flow Isolation based Model Not Covered Partly Covered Not Covered Not Covered

4. SDNSOC [25] Flow Rule Conflict Detection & Resolution Not Covered Not Covered Not Covered Partly Covered

5. BEAM [51] Behavior-based Access Control Not Covered Partly Covered Not Covered Not Covered

6. Formal Role-based Access Control [19] Formalized Access Control Model Not Covered Partly Covered Not Covered Not Covered

2020 1. BACC-SDN [24] Block-chain based Access Control Not Covered Partly Covered Not Covered Not Covered

2. ParaSDN [18] Parameterized Roles and Permission-based Access

Control Model

Not Covered Partly Covered Not Covered Not Covered

3. SDN-RBACa [20] Custom Permission based Access Control Not Covered Partly Covered Not Covered Not Covered

4. Audi-SDN [37] Automatic Detection of Network Policy

Inconsistencies

Not Covered Not Covered Not Covered Partly Covered

2021 1. ROCA [21] Auto-resolving Overlapping & Conflicts in ACL

policies

Not Covered Not Covered Not Covered Partly Covered

2. SEAPP [34] REST API Based Access Control Not Covered Partly Covered Not Covered Not Covered

3. SILedger [47] Block-chain & Attribute-based Encryption Access

Control

Not Covered Partly Covered Not Covered Not Covered

4. Private Block-chain based Access

Control [23]

Attribute Based Encryption, Certificate-Based Access

Control Protocol

Not Covered Partly Covered Not Covered Not Covered

2022 1. Lee et al. [36] Automated Fuzz-Testing Framework Not Covered Not Covered Not Covered Partly Covered

Eirene 128-bit Encryption Key, Three Different Modes for

Resource Allocation, Conflict Detection and

Resolution

Covered Covered Covered Covered

Refer to Controller DAC [52] (proposed in 2017) in Table 4. It

does not propose a mitigation strategy for malicious SDN apps

(threat 1) and information inconsistency (threat 4). Thus, threat 1

and threat 4 mitigation is marked as not covered in the Controller

DAC [52] row of Table 4. Authorization has been covered tomitigate

threat 2; however, varying application traffic and network traffic

requirements have not been covered. Thus, threat 2 mitigation

strategy has been marked as partly covered in the Controller DAC

[52] row of Table 4. Next, the mitigation strategy of threat 3 is

marked as partly covered because the exact details of datastore

capacity updates, etc. are missing. The security assessment of other

notable academic efforts in Table 4 follow suit (with more details

in Appendix E). Table 4 indicates a lack of a security service that

addresses and proposes mitigation strategies for all four threats

that arise due to the interaction between SDN apps and the SDN

configuration datastore.

6 SYSTEM DESIGN
The absence of universal security design principles and conse-

quently a security service that addresses and mitigates all four

threats associated with the interaction between SDN apps and SDN

configuration datastore provides the motivation for the design of

the Eirene framework. The Eirene framework is a AAAC app that:

mitigates threat 1 using the security design principle of authenti-

cation of SDN apps (to block malicious SDN apps from accessing

datastore), threat 2 using the security design principle of autho-

rization of SDN apps, threat 3 by keeping SDN apps accountable

for the amount of SDN datastore resources that they use (i.e., the

security design principle of accountability), threat 4 by detecting

and resolving conflicts among rules belonging to same/different

SDN app/s. The framework has four corresponding components.

First, the Eirene framework has a resource allocation component

that is based on the security design principles of authorization and

accountability of SDN apps. The resource allocation component

supports three different modes of operation to handle the varying

SDN app traffic and consequently varying network traffic require-

ments for small, medium, large scale, and special purpose networks.

For example, a small campus network may benefit from an equal or

fair resource allocation while a science demilitarized network may

require role-based resource allocation. To handle different kinds of

networks (small, medium, large, special purpose, etc.) and different

SDN apps requirements, the framework has a resource allocation
component that distributes datastore resources among SDN apps

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

using three different modes of operation with proper authorization

and accountability.

Second, when allocating resources, several parameters such as

datastore capacity, total number of SDN apps accessing the data-

store, etc., need to be set by the network practitioner. This func-

tionality is provided by the network practitioner component, which

has five sub-parameters that are set by the network practitioner de-

pending on the mode of operation used. Authentication is provided

by this component using a 128-bit encryption key generator that

generates a unique key for each legitimate SDN app. This key is

shared by the network practitioner with SDN apps beforehand.

The third important thing is ensuring that the requirements of

SDN apps are met in the best possible way. This is accomplished

by the SDN apps component, which uses five sub parameters to

measure and evaluate the most suited mode of resource allocation

for SDN apps.

The fourth and final security design principle is ensuring con-

sistency of information in the SDN configuration datastore. The

conflict handling component of the Eirene framework performs

this task and maintains consistent information in the datastore by

resolving conflicts among rules belonging to same/different SDN

app/s.

6.1 Resource Allocation Component
The resource allocation component of the Eirene framework con-

sists of three modes of operation to cater for varying SDN app

traffic and consequently varying network traffic requirements.

6.1.1 Fair or Equal Resource Allocation (FRA). Fair or equal re-
source allocation fairly or equally divides resources among all the

SDN apps accessing the SDN configuration datastore. “Fairness"

is achieved by statically giving a unified threshold to all SDN apps

and then keeping them accountable by dynamically updating the

allocated storage capacity upon every configuration rule inser-

tion/deletion Eq. 1 in Table 5 formally shows resource allocation

for this mode of operation. This mode is preferred when all SDN

apps have roughly equal storage requirements (e.g., a small campus

network).

6.1.2 Role-based Resource Allocation (RBRA). Role-based resource

allocation allocates varying amount of datastore resources to SDN

apps depending on their roles. This mode gives three different roles

to SDN apps: Tier1, Tier2, and Tier3 with Tier1 apps having the

highest priority and Tier3 apps having the lowest priority [26, 52].

This mode allocates resources using Eq. 2 in Table 5. This mode

is used when it is desired to give different roles to SDN apps due

to unequal storage requirements (e.g., a science demilitarized zone

setting).

6.1.3 Role-based Resource Allocation as an Optimization Problem
(RBRAOP). This mode of operation uses the concept of resource

pooling and revolves around the principle of maximizing the util-

ity of SDN apps subject to datastore capacity constraints. Eq. 3

in Table 5 shows the mathematical representation for this mode.

In this mode, all SDN apps share a dynamic threshold, which is

updated with every configuration rule insertion/deletion inside the

configuration datastore. This mode of operation uses the module

active rule deletion manager (the details are in Appendix A), which

carefully deletes rules (if there is no more space in the datastore)

to make room for more important rules (i.e., the rules with either

high rule priority or belonging to SDN apps that have high app

priority/App-ID). This is the preferred mode of operation for very

large networks with dynamically changing SDN app traffic as well

as network traffic requirements.

6.2 Network Practitioner Component
In this subsection, we propose five parameters for the network

practitioner component of the Eirene framework. These parameters

are set by the network practitioner depending on the mode of

operation (i.e., FRA, RBRA, RBRAOP) used.

6.2.1 Datastore Capacity (C). The datastore capacity, 𝐶 , is set by
the network practitioner to an optimal value (such that the SDN

controller neither runs out of memory nor undergoes performance

degradation). This upper limit on the SDN configuration datastore

capacity is estimated by the network practitioner prior to distribut-

ing resources among SDN apps.

6.2.2 Number of Applications (N). The network practitioner is re-

sponsible for setting the total/anticipated number of SDN apps

accessing the configuration datastore to a value 𝑁 . The datastore

capacity,𝐶 , is divided among 𝑁 SDN apps in some ratio depending

on the mode of operation used. FRA uses this parameter to equally

divide resources among all SDN apps. RBRA uses a variation of this

parameter such that the total number of SDN apps (𝑁) is divided

based on the role given to each SDN app. Eq. 2 in Table 5 shows

𝑁Tier1, which is the total number of SDN apps with app role Tier1,

𝑁Tier2 is the total number of SDN apps with app role Tier2, and

𝑁Tier3 is the total number of SDN apps with app role Tier3. This

parameter is not used by RBRAOP because datastore capacity is

dynamically allocated in that mode.

6.2.3 Key (K). The network practitioner assigns a unique 128-bit

encryption key (i.e., 𝐾𝑖) to each SDN app 𝑖 using an encryption

key generator and maintains a dictionary of keys (that is used to

authenticate an SDN app). The Eirene framework has the flexibility

to use any other sophisticated authentication scheme (e.g., 256-bit,

512-bit, 1024-bit encryption key) for SDN apps. The assignment of

keys to SDN apps is done via a 2-way communication between an

SDN app and network practitioner; this process of key assignment

is considered secure.

6.2.4 Application Identifier (App-ID). The network practitioner as-

signs a unique App-ID based priority to each SDN app to track

ownership of rules. The process of App-ID assignment is made

flexible by using sliding window technique that is capable of ac-

commodating new SDN apps with varying levels of priority.
1
This

1
The sliding window technique is as follows. Consider four SDN apps accessing the

configuration datastore: (i) FW, (ii) LB, (iii) TE, (iv) ARP. Here, N = 4 and the range

for App-ID is (1,, total window size), where total window size can be N*10 or

N*100 or N*1000 or N*(any other constant) depending on the size of the network and

the number of existing plus anticipated SDN apps accessing configuration datastore.

Suppose network practitioner has assigned an App-ID “ 50 to LB. Next, 10 new

SDN apps arrive at the datastore and need a higher priority than LB. These 10 new

apps are catered for by giving them an App-ID ă 50. Similarly, if 10 more apps

arrive at the datastore that have lower priority than LB then they are assigned an

App-ID ą 50. The exact details of flexible App-ID allocation is omitted from the paper

for brevity. We further assume that App-ID allocation is a secure process between

network practitioner and SDN apps. Thus, it is not possible to spoof App-ID.

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

Table 5: The formal details for the four components of the Eirene framework in three different modes.

Fair Resource Allocation (FRA) Role-based Resource Allocation (RBRA) Role-based Resource Allocation as an Optimization Problem

(RBRAOP)

1. Resource Allocation

Component

𝐴𝐶𝑖 “
𝐶 p# of rulesq

𝑁 p# of applicationsq
(1) 𝐴𝐶𝑖 “

𝑗𝑔% 𝑜𝑓 𝐶 p# of rulesq

𝑁𝑔 p# of 𝑁𝑔 applicationsq
(2)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝐶
maximize

ř

𝑖 𝛾𝑖 subject to 𝑆 ď 𝐶
(3)

where𝐴𝐶𝑖 is the allocated capacity for

an application 𝑖 ,𝐶 is datastore capacity,

and 𝑁 is the number of SDN applica-

tions accessing datastore resources.

where 𝑔 “ Tier1, Tier2, and Tier3; 𝑗
Tier1

“ 𝑥 ,
𝑗
Tier2

“ 𝑦, and 𝑗
Tier3

“ 𝑧; x, y, and z is the %

of 𝐶 that is equally divided among Tier1, Tier2, and

Tier3 applications;𝑁
Tier1

“ Number of Tier1 appli-

cations, 𝑁
Tier2

“ Number of Tier2 applications, and

𝑁
Tier3

“ Number of Tier3 applications.

where 𝑆 is the sum of the total number of rules in configuration

datastore; 𝛾𝑖 is application satisfaction. The aim is to have high 𝛾𝑖 for
all applications.

2. Network Practitioner

Component

(i) Datastore Capacity (C). (ii) Number

of Applications (N). (iii) Application

Identifier (App-ID).

(i) Datastore Capacity (C). (ii) Number of Applications

(N). (iii) Application Identifier (App-ID). (iv)

Application Role (App-Role).

(i) Datastore Capacity (C). (ii) Application Identifier (App-ID).

3a. Residual Storage

Capacity (𝛼𝑖)

𝐴𝐶𝑖 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 pinitially computed using Eq. 1 or Eq.2q

𝛼𝑖 “ 𝐴𝐶𝑖 ´ 𝐷𝑆𝑖 pwhere 𝐷𝑆𝑖 Ñ Desired Storage capacity for an application iq

𝐴𝐶𝑖 “

"

𝛼𝑖 if 𝛼𝑖 ě 0

0 otherwise

such that 0 ď 𝐴𝐶𝑖 ď 𝐶 and 𝐷𝑆𝑖 ě 0

(4)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝐶 pinitiallyq

𝛼𝑖 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝑖

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “

"

𝛼𝑖 if 𝛼𝑖 ě 0

0 otherwise

such that 0 ď 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ď 𝐶 and 𝐷𝑆𝑖 ě 0

(5)

3b. Unmet Storage

Requirement (𝛽𝑖)

𝛽𝑖 “ 𝜇 ¨ 𝐷𝑆𝑖 ` 𝛽𝑖 where 𝜇 “

"

1 if 𝛼𝑖 ă 0

0 otherwise

and 𝛽𝑖 “ 0 pinitiallyq

where 𝐷𝑆𝑖 is the Desired Storage capacity for an application 𝑖 .

(6)

3c. Actively Deleted

Rules (𝜁𝑖)

𝜁𝑖 “ 𝜁𝑖 ` 𝜂𝑖
and 𝜂𝑖 “ 0 and 𝜁𝑖 “ 0 pinitiallyq

where 𝜂𝑖 is the number of actively deleted rules.

(7)

𝜁𝑖 “ 𝜁𝑖 ` 𝜂𝑖
where 𝜁𝑖 “ 0 (initially)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝑖 p7 space createdq

(8)

3d. Application

Satisfaction (𝛾𝑖)

𝛾𝑖 “ 𝑘𝑜 ` 𝛼𝑖 ´ 𝛽𝑖 ´ 𝜁𝑖
where 𝑘0 “ 100 is a constant.

(If 𝛼𝑖 ě 0 then 𝛾𝑖 increases given that 𝛽𝑖 “ 0 and 𝜁𝑖 “ 0. Similarly, if 𝛽𝑖 ą 0 and 𝜁𝑖 ą 0, then 𝛾𝑖 decreases).
(9)

3e. Overall Success
Overall Success “

ř𝑁
𝑖“1

𝛾𝑖
where 𝑁 is the total number of applications and 𝛾𝑖 is the application satisfaction for an application 𝑖 .

(10)

4. Conflict Handling

Component

𝛼𝑖 “ 𝛼𝑖 ` 𝜎𝑖 ` 𝜅𝑖

𝐴𝐶𝑖 “

"

𝛼𝑖 if 𝛼𝑖 ě 0

0 otherwise.

𝛽𝑖 “ 𝛽𝑖 ` 𝜎𝑖
𝜁𝑖 “ 𝜁𝑖 ` 𝜅𝑖
where 𝜎𝑖 is a conflicting rule that cannot be stored
and 𝜅𝑖 is a conflicting rule that is actively deleted.

(11)

𝛼𝑖 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎𝑖 ` 𝜅𝑖

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “

"

𝛼𝑖 if 𝛼𝑖 ě 0

0 otherwise.

𝛽𝑖 “ 𝛽𝑖 ` 𝜎𝑖
𝜁𝑖 “ 𝜁𝑖 ` 𝜅𝑖

(12)

parameter is used to resolve rule conflicts and maintain information

consistency inside the configuration datastore (the details are in

Appendix B, Appendix C) as well as used to evict rules (if needed) to

make room for more important rules by active rule deletion manager
(Appendix A).

6.2.5 Application Role (App-Role). This parameter is used only

by RBRA, and it gives three different roles to SDN apps. (i) Tier1

by setting App-Role “ 0. (ii) Tier2 by setting App-Role “ 1. (iii)

Tier3 by setting App-Role “ 2. The SDN apps with App-Role “ 0

have the highest priority and are allocated a greater portion of the

datastore resources while apps with App-Role “ 2 have the lowest

priority and are allocated a lesser portion of the datastore resources.

The parameters that the network practitioner needs to set in

each mode of operation is summarized in the Network Practitioner

Component row of Table 5.

6.3 SDN Apps Component
In this subsection, we introduce five parameters for the SDN apps

component of the Eirene framework, which are used to evaluate the

most suitable mode of operation for a particular type of network

with a specific SDN app traffic.

6.3.1 Residual Storage Capacity (𝛼). The residual storage capacity
for an SDN app 𝑖 , denoted as 𝛼𝑖 , is a measure of the remainder

of memory resources of an SDN app. Depending on the mode of

operation used, it is formally defined by Eq. 4 or Eq. 5 in Table 5.

It is desirable to have 𝛼𝑖 ě 0 as it ensures that an app’s storage

requirements have been met.

6.3.2 Unmet Storage Requirement (𝛽). This parametermeasures the

unmet storage request of an SDN app due to lack of space (i.e., 𝛼𝑖 ă

0) or to maintain consistent information inside the configuration

datastore. Mathematically, it is given by Eq. 6 in Table 5. The goal
is to always have 𝛽𝑖 “ 0 as it guarantees that there is no unmet

storage requirement.

6.3.3 Actively Deleted Rules (𝜁). Actively deleted rules, represented
as 𝜁𝑖 for an SDN app 𝑖 , are the rules that are deleted from the datas-

tore either to make room for more important rules (i.e., active rule
deletion manager, Appendix A) or to maintain information consis-

tency (i.e., duplicate and conflicting action rule manager, Appendix
B and conflicting priority and priority action rule manager, Appendix
C). The formal representation is given by Eq. 7 and Eq. 8 in Table 5.

The aim is to have 𝜁𝑖 “ 0, which is intuitive as SDN apps typically

do not want their rules to be deleted from the SDN configuration

datastore without their willingness.

6.3.4 Application Satisfaction (𝛾). This is a measure of how satis-

fied an SDN app is after using datastore resources. It is formally

given by Eq. 9 in Table 5. Intuitively, application satisfaction is high

if an SDN app has sufficient memory resources to fulfill its storage

requirements (i.e., 𝛼𝑖 ě 0), all storage requirements are met (i.e.,

𝛽𝑖 “ 0), and there is no active rule deletion (i.e., 𝜁𝑖 “ 0).

6.3.5 Overall Success. The overall success is a measure of total

application satisfaction. Based on this overall success, a decision

about the most suitable mode of operation (to be used in a particular

situation) is made. For example, let overall success be 100, 200, and

300 for FRA, RBRA, and RBRAOP respectively. Then the preferred

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

Algorithm 1 Pseudocode for Conflict Handling Component.

1: def DuplicateAndConflictingActionRuleManager

2: if (rules belong to different SDN apps) // Principle 1

3: Keep the rule with lower App-ID.

4: else if (rules belong to same SDN app) // Principle 2

5: Keep the latest rule.

6: def ConflictingPriorityAndPriorityActionRuleManager

7: if (rules belong to different SDN apps) // Principle 3

8: Keep the rule with lower App-ID.

9: else if (rules belong to same SDN app) // Principle 4

10: Keep the rule with high rule priority.

mode of operation is RBRAOP (because it has the highest overall

success). The formal representation is given by Eq. 10 in Table 5.

6.4 Conflict Handling Component
The conflict handling component of the Eirene framework consists

of two sub components and four corresponding principles, which

are summarized by Algorithm 1.

6.4.1 Duplicate and Conflicting Action Rule Manager. This module

resolves conflicts between duplicate rules and rules that conflict on

action using principle 1 and principle 2 of Algorithm 1. Principle 1
resolves such a conflict between two different SDN apps by keep-

ing/storing the rule belonging to the SDN app with lower App-ID.

This is intuitive because an SDN app with lower App-ID has high

priority. By principle 2, for same SDN apps, the conflict is resolved

by keeping the latest rule. Again, this is intuitive as the latest input

represents latest requirement. The formal details are in Appendix

B.

6.4.2 Conflicting Priority and Priority Action Rule Manager. This
module settles the battle between rules that either conflict only on

priority or on both priority and action. Algorithm 1 explains the

operating principles for this module (formal details are in Appen-

dix C). According to principle 3, if such a conflict exists between

different SDN apps, the rule belonging to an SDN app with lower

App-ID is kept (which is intuitive as an SDN app with lower App-ID

has higher priority). For conflict between rules belonging to the

same SDN app, the rule with higher rule priority is kept (according

to principle 4). Again, this is intuitive as the rule with high rule

priority is more important.

6.5 Implementation
We implemented a prototype of the Eirene framework as a Java

application on ODL controller. The minimum memory (space) and

run-time (time) requirements for the Eirene framework are:

Space Complexity : O (Number of Rules)

Time Complexity : O (Number of Rules)

(13)

Both space and time complexity of the Eirene framework is a direct

function of the number of configuration rules in the SDN configu-

ration datastore, which is intuitive because every incoming rule is

compared with the existing rule database. It is important to mention

that the Eirene framework has been implemented as a Java appli-

cation on the ODL controller, but the design can be ported to any

other controller. As part of future work, we plan to use hash tables

to reduce the latency of the system. However, worst-case complex-

ity of the system, using hash tables, would still be O (Number of

Rules).

7 FUNCTIONALITY DEMONSTRATION
We use two practical use case scenarios to explain the working of

the Eirene system.

7.1 Scenario 1: A Multi-SDN Apps AAA Use Case
We consider a practical use case scenario where multiple SDN apps

can access the SDN configuration datastore, which has a capacity

to store 50,000 configuration rules. This capacity is to be divided

among 50 SDN apps, note that the network practitioner typically

over provisions the number of SDN apps so that the new SDN

apps can be accommodated. The ODL controller is a Java Virtual

Machine (JVM), and it is possible to store 50,000 configuration rules

by setting JVM heap size to 4GB. The network practitioner sets the

datastore capacity at𝐶 = 50,000 configuration rules and the number

of SDN apps at 𝑁 = 50. The App-IDs are assigned using a sliding

window technique such that it is possible to cater for new SDN

apps. Table 6 shows the details of parameter assignment for this

multi-SDN apps scenario for each mode of operation.

7.1.1 Authentication of SDN Apps. All SDN apps including the 5

SDN apps shown in Table 6: TE, LB, FW, ARP, LS; are given a unique

128-bit encryption key by the network practitioner. The unique

keys are used for authentication of each SDN app before every rule

insertion/deletion inside the SDN configuration datastore.

7.1.2 Authorization of SDN Apps. The authenticated SDN apps are

authorized to use a certain percentage of datastore resources by the

network practitioner depending on the mode of operation used. For

FRA, the datastore resources are fairly or equally distributed among

50 SDN apps. Using Eq. 1 in Table 5, the capacity allocated to all 50

SDN apps is 1,000 configuration rules. Table 6 shows 5 such SDN

apps and the capacity allocated to them for this mode. However,

datastore resources are provisioned such that an additional 45 SDN

apps can be accommodated, and all 50 apps have a capacity to store

a maximum of 1,000 configuration rules.

The mode RBRA assigns different roles to different SDN apps,

based onwhich datastore resources are allocated. For a total number

of 50 SDN apps, the case study depicted in Table 6, assigns tier1

role to 20 SDN apps, tier2 role to 10 SDN apps, and tier3 role to 20

SDN apps. Thus, Table 6 sets tier1 role for FW by setting App-Role

= 0; tier2 role for TE and LB by setting App-Role = 1 for both; tier3

role for ARP and LS by setting App-Role = 2 for both. Using Eq. 2

in Table 5, 50% of datastore resources are allocated to tier1 SDN

apps, which is a capacity of 25,000 configuration rules to be divided

among 20 SDN apps (i.e., 1,250 configuration rules for each SDN

app with App-Role = 1). Next, 30% (i.e., 15,000 configuration rules)

of datastore resources are allocated cumulatively to 10 tier2 SDN

apps (i.e., 1,500 configuration rules for each SDN app with App-Role

= 2). Thus, Table 6 shows a storage capacity of 1,500 configuration

rules for both TE and LB. Finally, 20% (i.e., 10,000 configuration

rules) of datastore resources are allocated to 20 SDN apps with tier3

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

Table 6: Scenario 1 – A Multi-SDN Apps AAA Use Case (with 𝐶 “ 50, 000 configuration rules and 𝑁 “ 50 SDN apps).

Mode of Operation Traffic Engineering (TE) Load Balancer (LB) Firewall (FW) ARP Proxy (ARP) Learning Switch (LS)

App-ID
TE

“ 200 App-ID
LB

“ 300 App-ID
FW

“ 100 App-ID
ARP

“ 400 App-ID
LS

“ 500

1. Fair Resource Allocation (FRA) AC
TE

“ 1, 000 AC
LB

“ 1, 000 AC
FW

“ 1, 000 AC
ARP

“ 1, 000 AC
LS

“ 1, 000

2. Role-based Resource Allocation (RBRA) AC
TE

“ 1, 500 AC
LB

“ 1, 500 AC
FW

“ 1, 250 AC
ARP

“ 500 AC
LS

“ 500

App-Role = 1 App-Role = 1 App-Role = 0 App-Role = 2 App-Role = 2

3. Role-based Resource Allocation as an Optimization

Problem (RBRAOP)

AC
TE

“ 50, 000 AC
LB

“ 50, 000 AC
FW

“ 50, 000 AC
ARP

“ 50, 000 AC
LS

“ 50, 000

Table 7: Scenario 2 – A Multi-SDN Apps Conflict Handling Use Case. (Keys: ✕ Ñ Rule is not stored/deleted, ❙ Ñ Rule is partially
stored/deleted, ✓ Ñ Rule is stored.)

SDN App App-ID Src Port Dst Port Src IP Dst IP Priority Action R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1. TE 200 1212 1234 10.0.0.1{23 10.0.0.˚{23 1000 Deny ✓

R2. TE 200 1212 1234 10.0.0.1{23 10.0.0.2{23 65535 Allow ❙ ✓

R3. LB 300 1212 1234 10.0.0.1{23 10.0.0.2{23 1000 Allow ❙ ✓ ✕

R4. FW 100 1212 1234 10.0.0.1{23 10.0.0.2{23 500 Deny ❙ ✕ ✕ ✓

R5. LB 300 4444 Any 172.168.0.1{32 172.168.0.2{32 65535 Deny ❙ ✕ ✕ ✓ ✓

R6. TE 200 1212 1234 10.0.0.1{23 10.0.0.2{23 1000 Deny ❙ ✕ ✕ ✓ ✓ ✕

R7. ARP 400 1212 1234 10.0.0.1{23 10.0.0.2{23 500 Allow ❙ ✕ ✕ ✓ ✓ ✕ ✕

R8. LS 500 1212 1234 10.0.0.1{23 10.0.0.2{23 200 Allow ❙ ✕ ✕ ✓ ✓ ✕ ✕ ✕

R9. FW 100 1212 1234 10.0.0.1{23 10.0.0.˚{23 50000 Deny ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓

R10. FW 100 1212 1234 10.0.0.1{23 10.0.0.2{23 65535 Allow ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ❙ ✓

role. Thus, an allocated memory capacity of 500 configuration rules

each for both ARP and LS for this mode of operation.

The mode RBRAOP dynamically allocates resources. Therefore,

an initial maximum datastore capacity of 50,000 configuration rules

is allocated to all 50 SDN apps and the capacity is dynamically

updated/reduced as the resources gets used up.

7.1.3 Accountability of SDN Apps. The accountability function of

the Eirene system adjusts the allocated capacity corresponding to

each SDN app. For example, ACTE “ 1, 000 rules for FRA (Table 6).

If TE has stored 100 rules in the configuration datastore then its

corresponding allocated capacity changes from 1,000 to 900 rules.

Similarly, rule deletion increases capacity for the corresponding

SDN app.

7.2 Scenario 2: A Multi-SDN Apps Conflict
Handling Use Case

In this scenario, we use real-world complicated cases of rule con-

flicts to explain the conflict handling part of the Eirene system.

Table 7 shows 10 such configuration rules belonging to 5 SDN apps.

Refer to Table 7, R1, a rule belonging to TE appwith App-ID = 200,

forbids communication between host with IP address 10.0.0.1{23

and all hosts with IP address in the range 10.0.0.˚{23. Initially the

datastore is empty, therefore the rule is stored. Hence (✓) for R1 in

the R1 row of Table 7.

Next, R2, a rule belonging to TE app, allows communication

between host with IP address 10.0.0.1{23 and host with IP address

10.0.0.2{23. This rule R2 varies on priority and action with R1.

The conflicting priority and priority action rule manager module

of the conflict handling component resolves this conflict (using

principle 4 as given by Algorithm 1) by partially deleting R1 such

that traffic between host with IP address 10.0.0.1{23 and 10.0.0.2{23

is allowed but blocked between 10.0.0.1{23 and 10.0.0.˚{23 (with

the exception of 10.0.0.2{23). Therefore, a partial deletion (❙) for R1

and storage (✓) for R2 in the R2 row of Table 7.

The rule R3 belonging to LB conflicts on priority with R2. The

conflict is resolved by the conflicting priority and priority action

rule manager module of the conflict handling component using

principle 3 of Algorithm 1. Because LB has a high App-ID than TE,

R3 is not stored as indicated by (✕) in the R3 row of Table 7. Next,

rule R4, which belongs to FW conflicts on priority and action with

R2. The problem is handled by the conflicting priority and priority

action rule manager module of the conflict handling component

using principle 3 (Algorithm 1). As a result, R2 is deleted and R4 is

stored as indicated by (✕) for R2 and (✓) for R4 in the R4 row of

Table 7.

The rule R5, belonging to LB, does not conflict with the existing

rules in the configuration datastore (i.e., R1 and R4) so it is stored

as indicated by (✓) in the R5 row of Table 7. Next, R6, belonging

to TE, conflicts on priority with R4. The conflicting priority and

priority action rule manager module of the conflict handling com-

ponent of the Eirene framework resolves this issue using principle
3 (Algorithm 1). Because TE has a high App-ID than FW, this rule

is not stored as indicated by (✕) in R6 row of Table 7.

Next, R7, belonging to ARP, conflicts on action with an existing

rule in the configuration datastore (i.e., R4). The duplicate and

conflicting action rule manager module of the conflict handling

component of the Eirene framework uses principle 1 (Algorithm
1) to resolve the issue. As a result, R7 is not stored because it has

a high App-ID than FW. This is indicated by (✕) in the R7 row

of Table 7. The rule R8, belonging to LS conflicts on priority and

action with R4. It is handled using principle 1 (Algorithm 1) of the

conflict handling component. As a result, R8 is not stored (✕).

The rule R9, belonging to FW, conflicts on priority with R1, on

priority and action with R2, and on priority with R4. The conflict

between R1 and R2 is handled using principle 1 of the conflicting
priority and priority action rule manager. As a result, R1 and R2 are

deleted from the datastore. The conflict with R4 is handled using

principle 2 of the conflicting priority and priority action rule man-

ager and is resolved by deleting R4. Thus, R9 is stored inside the

datastore as indicated by (✓) in the R9 row of Table 7. Finally, R10,

belonging to FW conflicts on priority and action with one of the

rules stored as R9. Using principle 4, the rule that denies communi-

cation between hosts with IP address 10.0.0.1{23 and 10.0.0.2{23

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

Table 8: Statistics for A Multi-SDN Apps Small Scale Security Evaluation (using real-world dataset containing 36 rules).

Fair Resource Allocation (FRA) Role-based Resource Allocation (RBRA) Role-based Resource Allocation as an Optimization Problem (RBRAOP)

Firewall (FW) App-ID
FW

“ 1 App-ID
FW

“ 1, App-Role
FW

“ 0 App-ID
FW

“ 1

Traffic Engineering (TE) App-ID
TE

“ 2 App-ID
TE

“ 2, App-Role
TE

“ 2 App-ID
TE

“ 2

Load Balancer (LB) App-ID
LB

“ 3 App-ID
LB

“ 3, App-Role
LB

“ 1 App-ID
LB

“ 3

AC
FW

“ 10 rules pEq. 1q AC
FW

“ 15 rules pEq. 2q AC
FW

“ 30 rules pEq. 3q

Allocated Capacity AC
TE

“ 10 rules pEq. 1q AC
TE

“ 9 rules pEq. 2q AC
TE

“ 30 rules pEq. 3q

AC
LB

“ 10 rules pEq. 1q AC
LB

“ 6 rules pEq. 2q AC
LB

“ 30 rules pEq. 3q

Overall Success 293 293 319

Table 9: A Multi-SDN Apps Small Scale Security Evaluation using Real-World Dataset.

Averaged Response Time (ns)

Mode R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

FRA 77.64 16.17 10.44 15.92 14.62 12.07 23.02 26.82 77.49 72.53 8 8 8 8 8 11.9 18.14 18.50

RBRA 86.69 11.03 17.19 97.99 50.68 20.20 16.87 18.07 35.67 13.32 34.76 18.23 13.81 47.67 8 14.18 48.92 26.67

RBRAOP 81.05 16.54 15.12 19.35 17.48 16.34 35.76 38.88 19.23 29.24 22.55 17.76 15.52 11.71 8 21.98 121.18 109.48

Without Eirene 53.50 19.22 12.84 15.63 22.75 15.53 47.04 69.96 29.24 79.72 66.30 39.46 26.73 57.85 53.31 41.75 75.62 41.12

R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36

FRA 28.43 8 26.68 24.35 81.23 8 8 18.53 14.33 31.80 68.20 78.63 8 14.23 56.27 60.19 90.16 48.91

RBRA 38.57 8 12.29 38.68 33.10 8 8 8 11.96 16.21 8.52 33.67 8 6.37 13.41 8 8 8

RBRAOP 76.95 8 16.53 45.43 59.68 8 8 8 10.40 7.74 8.65 38.34 8 32.58 53.59 75.47 41.01 59.30

Without Eirene 36.36 81.66 33.45 21.72 21.22 12.72 41.99 28.66 25.03 34.76 27.29 12.15 8.50 15.41 8.51 10.75 15.75 11.91

with a priority of 50,000 is deleted (thus partial deletion (❙) for R9)

and R10 is stored (✓) as indicated by R10 row of Table 7.

8 SECURITY EVALUATION
In this section, we evaluate the security of the Eirene framework

on a small as well as on a large scale.

8.1 A Multi-SDN Apps Small Scale Security
Evaluation

This subsection explains the dataset used for experimentation, the

experimental setup, the testing conditions, and the results.

Real-World Dataset. The dataset used for small scale security evalua-

tion of the Eirene framework consists of 36 real-world configuration

rules, which belong to 3 SDN apps (FW, TE, LB), and the dataset

includes complicated cases of rule conflicts. The rule composition

in the dataset is such that 14 rules belong to the FW app (shown as

R1–R14 in Table 9), 10 rules that belong to the TE app (shown as

R15–R24 in Table 9), and 12 rules that belong to the LB app (shown

as R25–R36 in Table 9). The composition of complicated cases of

rule conflicts in the dataset is such that:

Duplicate Rules: R1&R15, R3&R24, R17&R31,

Conflicting Rules: R5&R20, R8&R25, R14&R26

(14)

This dataset has been obtained from the Research Computing De-

partment in our university, which is responsible for implementing

Access Control Lists (ACL) and firewall rules on the traffic enter-

ing campus network as well as applying load balancing and traffic

engineering policies to effectively manage the traffic throughout

the campus network.

Experimental Setup. The controller used for experimentation is

ODL, which is a Java Virtual Machine (JVM) and its JVM heap

size is fixed at 4GB. The configuration datastore capacity of the

controller is set at 30 configuration rules. The rule requests arrive

at the datastore in a sequential manner such that R1 comes first,

then rule R2, and so on. We next test the authentication, authoriza-

tion, accountability, and conflict handling functions of the Eirene

framework.

Test 1 – Threat 1 Mitigation. The Eirene framework uses authentica-

tion to filter out malicious SDN apps by using a 128-bit unique key

generator (the unique key is shared by the network practitioner

with SDN apps). We tested the authentication function of the Eirene

system by verifying that SDN apps are allowed to insert or delete

a configuration rule in the SDN configuration datastore iff they

use the correct 128-bit encryption key. Failure to do so results in

denying access to utilize configuration datastore resources by the

SDN controller.

Test 2 – Threat 2 Mitigation. The Eirene framework uses autho-

rization to mitigate threat 2. To test the correct working of the

authorization function of the Eirene framework, we tested if the

SDN apps are allocated datastore capacity based on their roles (de-

pending on the mode of operation used, i.e., FRA, RBRA, RBRAOP).

Table 8 shows the allocated capacity for each SDN app in a partic-

ular mode of operation along with the values for overall success.

The SDN apps can then use the correct 128-bit encryption key to

use this allocated capacity for rule insertion or deletion. Refer to

Table 9, a response time of 8 indicates that the configuration rule

is not stored. Furthermore, the response time measurements shown

in Table 9 are averaged over 10 iterations.

The averaged response time measurements for FRA in Table 9

shows 8 at R11, R12, R13, and R14 because FW is not allowed to

store more than 10 rules (since ACFW “ 10 rules for FRA in Table

8). This indicates correct operation of authorization function of the

Eirene system for FRA mode. For RBRA and RBRAOP, the configu-

ration datastore capacity allocated to FW app is 15 configuration

rules and 30 configuration rules respectively (Table 8). Therefore, all

14 configuration rules (i.e., R1 – R14) are stored in the configuration

datastore when using the modes RBRA and RBRAOP (indicated by

RBRA and RBRAOP rows of Table 9).

Test 3 – Threat 3 Mitigation. The Eirene framework keeps SDN

apps accountable for the datastore resources that they utilize. To

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

verify that the accountability function of the Eirene framework is

working as intended, refer to Table 8. The TE app is allowed to store

9 configuration rules in the RBRA mode of operation. Note that

R15 is a duplicate of R1 (Eq. 14), and FW app has a lower App-ID

than TE app (Table 8) so, the conflict is resolved by not storing R15

(as indicated by row RBRA in Table 9). Then, rules R16 – R19 are

stored and ACTE “ 9 ´ 4 “ 5 configuration rules. Next, R20 is not

stored due to conflict resolution (Eq. 14), R21 – R23 gets stored as

they are not conflicting rules, and the TE app has sufficient memory

resources. This updates ACTE “ 5 ´ 3 “ 2 configuration rules.

Next, R24 is not stored due to conflict resolution (from Eq. 14, R3 &

R24 are conflicting rules). This demonstrates the correct working

of the accountability function of the Eirene system.

The LB app has ACLB “ 6 configuration rules for RBRA mode

(Table 8). From RBRA row in Table 9, the rule R25 and R26 are not

stored inside the SDN configuration datastore because both are

conflicting rules (from Eq. 14). The rules R27 – R30 are stored as

these are neither duplicates nor conflicting rules. Thereby, making

ACLB “ 6 ´ 4 “ 2 configuration rules. Then, R31 is not stored

as it is a duplicate of R17 (Eq. 14). Next, R32 and R33 are stored,

which makes ACLB “ 2´2 “ 0 configuration rules. Therefore, R35

and R36 are not stored as LB has used all of the datastore capacity

allocated to it in the RBRA mode. The fact that the space allocated

to LB app is adjusted with incoming rules and the LB app cannot

store any more rules after reaching the allocated storage capacity

verifies the correct operation of the accountability function of the

Eirene framework.

Test 4 – Threat 4 Mitigation. The conflict handling component of

the Eirene framework is responsible for detecting and handling rule

conflicts in real-time and mitigate threat 4. The FRA row in Table

9 shows that R15 is not stored as it is a duplicate of R1 (Eq. 14).

Since FW has a lower App-ID than TE so, the conflict is resolved by

keeping R1 as per principle 1 (Algorithm 1). To resolve the problem

of duplicate rules: R3 & R24 and R17 & R31; again, principle 1 from
Algorithm 1 is used. Next, principle 1 and principle 3 from Algorithm

1 are used to resolve the conflicts between R5 & R20, R8 & R25,

with the result that R5 and R8 are stored in the datastore, R14

is not stored as ACFW “ 0 configuration rules after the storage

of R10. Since R14 is not in the configuration datastore so, R26

gets stored. The fact that R24 and R31 are not stored in the SDN

configuration datastore when using FRAmode shows that real-time

conflict detection and resolution function of the Eirene system is

working. The same principles from Algorithm 1 apply to the RBRA

and RBRAOP modes and details are omitted purely for the purpose

of saving space.

The dataset we have used for small scale security evaluation

does not include attack (configuration) rules because the Eirene

system blocks an SDN app without proper credentials.
2

8.2 A Single-SDN App Large Scale Security
Evaluation

In this subsection, we test the Eirene system for its security on a

large scale.

2
An in-depth analysis on the strength of the authentication scheme is considered out

of scope for this work and left as a future exercise.

Figure 2: A Single-App Large Scale Security Evaluation.

Real-World Dataset. For large scale security evaluation, we have

used real-world configuration rules that belong to the LB app. These

real-world (55,000) configuration (attack) rules have been obtained

from [30]. Dixit et al. [30] used these rules to carryout Denial of

Service (DoS) attack on SDN controller by exhausting its resources.

Experimental Setup. The ODL controller is used for experimenta-

tion, its JVM heap size is fixed at 4GB, and datastore capacity is set

at𝐶 “ 50, 000 configuration rules. The mode of operation used here

is RBRAOP, just for simplicity but the experiment can be repeated

using FRA and RBRA.

Test 5 – Threat 1 Mitigation. We tested the authentication function

by verifying that the LB app is allowed to insert/delete a configura-

tion rule in the SDN configuration datastore only after entering the

correct 128-bit encryption key (that has been shared by the network

practitioner with the LB app beforehand). This shows the correct

working of the authentication function of the Eirene framework.

Test 6 – Threat 2 Mitigation. We tested the working of the autho-

rization function of the Eirene system by verifying the datastore

capacity that has been allocated to the LB app. The fact that the LB

app is allocated a capacity to store 50,000 configuration rules (where

C = 50,000 configuration rules) indicates the correct working of the

authorization function of the Eirene framework.

Test 7 – Threat 3 Mitigation. We have verified the accountability

function of the Eirene framework by observing that the storage

capacity allocated to the LB app correspondingly decreases as more

and more rules are added in the SDN configuration datastore. After

reaching an upper limit of 50,000 rules, no more rules can be added

in the configuration datastore unless some old rules have been

deleted. This shows the working of the accountability function of

the Eirene system.

Test 8 – Threat 4 Mitigation. The blue curve in Fig. 2 shows linearly

increasing one-time latency as rules are added in the configuration

datastore. This is because every incoming rule is compared with the

existing rule database so that the conflict handling component of

the Eirene system can detect and resolve rule conflicts in real-time

if need arises. An incoming rule is stored in the datastore iff it is

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

not a duplicate or a conflicting rule and the corresponding SDN

app (to which the rule belongs) has memory resources to fulfill the

rule request.

9 DISCUSSION AND LIMITATIONS
In this section, we discuss important aspects, extensions, and limi-

tations of the Eirene framework.

9.1 Performance Overhead (One-time Delay)
The Eirene framework incurs a maximum one-time delay of «7ms

for the insertion of 50,000
th

rule in the datastore in the presence of

49,999 rules (Fig. 2). This «7ms is not a per-packet but a one-time

delay (as once the rule is in the datastore, it gets installed in the

switches and then packets are forwarded based on matching packet

header). From the prior research on acceptable delay duration (e.g.,

an acceptable delay duration of «300ms (for tapping tasks) and

«170ms (for dragging tasks) of mobile apps, acceptable «13ms

delay for realistic gaming environments) and the fact that to date

there is no universal limit on acceptable latency for SDN datastores;

we conclude that the security achieved by the Eirene framework

with a «7ms one-time delay is an acceptable trade-off (as the rules

in the datastore implement security policies, forwarding decisions,

traffic engineering details, etc.; and the correct storage and con-

sequently correct execution of security policies, forwarding rules,

etc., is essential for the network to operate in an intended manner).

9.2 Run-time considerations
The Eirene framework may require full or partial adjustments in a

few situations while running. While the current Eirene framework

prototype does not handle them, we discuss them here.

9.2.1 App-IDs (Unavailable). The Eirene framework uses a sliding

window technique to assign App-IDs to SDN apps. The sliding

window technique does give the flexibility to cater for new SDN

apps with varying levels of priority. If all App-IDs are taken, the

network practitioner may need to do some adjustments (such as

increasing range of App-IDs, reassigning App-IDs to existing SDN

apps, adjusting for corresponding changes in the rule database).

9.2.2 Network Practitioner Parameters (Modified). The Eirene frame-

work requires the network practitioner to set two important pa-

rameters: (i) datastore capacity, (ii) number of SDN apps. A change

or modification in these parameters leads to corresponding ad-

justments in the system. For example, assume that the datastore

capacity was set at 50,000 configuration rules and the network

grew that led to adding external memory resources to increase the

datastore capacity (to cater for an additional 20,000 configuration

rules). Then, this new datastore capacity of 70,000 configuration

rules is to be divided among SDN apps and the ratio of division

varies depending on the mode of operation used.

9.2.3 Denial of Service – Possibility. The Eirene system authen-

ticates an SDN app, authorizes it with a role, and then holds it

accountable for information stored by it in the configuration datas-

tore. Once an SDN app has used up all its rightful share, the app is

denied service by the controller and cannot store any more rules

(unless some old rules are deleted by the respective SDN app). This

is by design to ensure that one SDN app does not overload the

entire configuration datastore.

9.2.4 Permission-based System. The Eirene framework authorizes

SDN apps using access control that could be equal (FRA), role based

(RBRA), or dynamic (RBRAOP). Each authenticated SDN app can

only read, write, modify, or delete its entries and cannot access the

data entered by other SDN apps. The structure of permissions can

be modified such that some SDN apps can only read while others

can read and write.

9.2.5 Credential-based Authentication. The Eirene system requires

each SDN app to enter correct credentials (in the form of a 128-bit

encryption key) before every rule insertion/deletion. Additionally,

periodically changing passwords and correspondingly updating

password (128-bit encryption key) database adds a second layer of

security against malicious/invalid SDN apps. A detailed discussion

on the resilience of the proposed scheme against different types of

adversaries is considered out of scope for the purpose of this paper

and left as a future exercise.

9.2.6 Scalability. We have evaluated the performance of the Eirene

framework using 50,000 configuration rules, which is typically the

case for a small to medium sized network. A medium to large scale

network may contain rules on the order of hundreds of thousands

to millions/billions. We argue that the evaluation of the Eirene

framework using 50,000 configuration rules provide a good baseline

for any large-scale network using the notion of resource pooling

(the details are in Appendix D).

10 CONCLUSION
With this work, we introduce the notion of quantifying security de-

sign principles for safeguarding the interactions between SDN apps

and the SDN configuration datastore. Based on this quantification,

we present a prototype implementation of the Eirene framework.

We test the system’s security on a small scale and a large scale us-

ing two real-world datasets: (i) real-world campus network dataset

consisting of real-world complicated cases of configuration rule

conflicts, (ii) 50,000+ real-world configuration (attack) rules. We

believe that this work, by introducing fundamental definitions for

securing interactions between SDN apps and the SDN configuration

datastore will serve as a universal baseline security service/guide-

line to be used across multiple SDN platforms. Thereby, providing

a reliable backbone and assisting in reaping the true benefits of the

SDN powerhouse.

11 ACKNOWLEDGEMENTS
This work was partially supported from the Center for Cyberse-

curity and Trusted Foundations at Arizona State University. Sana

Habib was supported by the Fulbright scholarship. We would like

to thank Jedidiah R. Crandall for inspiring the title of our paper,

commenting on our draft, and his guidance on the interpretation

of the one-time delay of the system. We are also grateful to the

anonymous CCSW’22 reviewers for their valuable feedback.

REFERENCES
[1] 2017. Uauthenticated Upload of Applications. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-1000081 (2017).

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

[2] 2018. A comprehensive 3-dimensional security analysis of a controller in software-

defined networking. https://onlinelibrary.wiley.com/doi/epdf/10.1002/spy2.21
(2018).

[3] 2020. Demo AAA/RADIUS Server Testing.

https://wiki.onosproject.org/pages/viewpage.action?pageId=6357336 (2020).
[4] 2020. MarketsandMarkets. https://www.prnewswire.com/news-releases/software-

defined-networking-market-worth-32-7-billion-by-2025–exclusive-report-by-
marketsandmarkets-301104606.html (2020).

[5] 2021. Global SDN Orchestration Market to Reach 117.27 Billion by 2030: Allied

Market Research. https://www.yahoo.com/now/global-sdn-orchestration-market-
reach-071500264.html (2021).

[6] 2021. ONOS. Demo AAA/RADIUS Server Testing.

https://wiki.onosproject.org/pages/viewpage.action?pageId=6357336 (2021).
[7] 2022. Cloud SDN - Ericsson. https://www.ericsson.com/en/portfolio/digital-

services/cloud-infrastructure/cloud-sdn (2022).

[8] 2022. FloodLight. https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
overview (2022).

[9] 2022. Hewlett Packard Enterprise Development.

https://www.hpe.com/us/en/home.html (2022).
[10] 2022. Huawei Agile Campus Network Solution Brochure.

https://e.huawei.com/en/related-page/solutions/technical/agile-networking/agile-
campus-solutions/agile-campus/brochure/solutions𝑐𝑎𝑚𝑝𝑢𝑠𝑛𝑒𝑡𝑤𝑜𝑟𝑘p2022q.

[11] 2022. Huawei Technologies. https://www.huawei.com/en/ (2022).
[12] 2022. NEC Corporation. https://www.nec.com/ (2022).
[13] 2022. Open Network Operating System (ONOS). https://opennetworking.org/onos/

(2022).

[14] 2022. OpenDayLight. Authentication, Authorization and Accounting (AAA) Ser-

vices. https://docs.opendaylight.org/projects/aaa/en/latest/dev-guide.html (2022).
[15] 2022. OpenDayLight (ODL). https://www.opendaylight.org/ (2022).
[16] Ihsan H Abdulqadder, Deqing Zou, Israa T Aziz, Bin Yuan, and Weiming Li. 2018.

SecSDN-cloud: defeating vulnerable attacks through secure software-defined

networks. IEEE Access 6 (2018), 8292–8301.
[17] Abdullah Al-Alaj, Ram Krishnan, and Ravi Sandhu. 2019. SDN-RBAC: An access

control model for SDN controller applications. In 2019 4th International Conference
on Computing, Communications and Security (ICCCS). IEEE, 1–8.

[18] Abdullah Al-Alaj, Ram Krishnan, and Ravi Sandhu. 2020. ParaSDN: An Access

Control Model for SDN Applications based on Parameterized Roles and Permis-

sions. In 2020 IEEE 6th International Conference on Collaboration and Internet
Computing (CIC). IEEE, 107–116.

[19] Abdullah Al-Alaj, Ravi Sandhu, and Ram Krishnan. 2019. A formal access control

model for SE-Floodlight controller. In Proceedings of the ACM International Work-
shop on Security in Software Defined Networks & Network Function Virtualization.
1–6.

[20] Abdullah Al-Alaj, Ravi Sandhu, and Ram Krishnan. 2020. A Model for the

Administration of Access Control in Software Defined Networking using Custom

Permissions. In 2020 Second IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA). IEEE, 169–178.

[21] Awais Bin Asif, Muhammad Imran, Nadir Shah, Mehtab Afzal, and Hasnat Khur-

shid. 2021. ROCA: Auto-resolving overlapping and conflicts in Access Control

List policies for Software Defined Networking. International Journal of Commu-
nication Systems 34, 9 (2021), e4815.

[22] Christian Banse and Sathyanarayanan Rangarajan. 2015. A secure northbound

interface for SDN applications. In 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1.
IEEE, 834–839.

[23] Durbadal Chattaraj, Basudeb Bera, Ashok Kumar Das, Joel JPC Rodrigues, and

Young Ho Park. 2021. Designing Fine-grained Access Control for Software

Defined Networks using Private Blockchain. IEEE Internet of Things Journal
(2021).

[24] Durbadal Chattaraj, Sourav Saha, Basudeb Bera, and Ashok Kumar Das. 2020.

On the Design of Blockchain-Based Access Control Scheme for Software Defined

Networks. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 237–242.

[25] Ankur Chowdhary, Dijiang Huang, Gail-Joon Ahn, Myong Kang, Anya Kim,

and Alexander Velazquez. 2019. SDNSOC: Object oriented SDN framework. In

Proceedings of the ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization. 7–12.

[26] Sean Convery. 2004. Network security architectures. Cisco Press.

[27] Hongyan Cui, Zunming Chen, Longfei Yu, Kun Xie, and Zongguo Xia. 2017. Au-

thentication mechanism for network applications in SDN environments. In 2017
20th International Symposium on Wireless Personal Multimedia Communications
(WPMC). IEEE, 1–5.

[28] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A Gunter,

Xiaoyong Zhou, and Michael Grace. 2017. HanGuard: SDN-driven protection

of smart home WiFi devices from malicious mobile apps. In Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
122–133.

[29] Spyros Denazis, Evangelos Haleplidis, Jamal Hadi Salim, Odysseas Koufopavlou,

David Meyer, and Kostas Pentikousis. 2015. Software-defined networking (SDN):

Layers and architecture terminology. (2015).

[30] Vaibhav Hemant Dixit, Adam Doupé, Yan Shoshitaishvili, Ziming Zhao, and

Gail-Joon Ahn. 2018. AIM-SDN: Attacking Information Mismanagement in SDN-

datastores. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 664–676.

[31] Xiaoyu Duan and Xianbin Wang. 2016. Fast authentication in 5G HetNet through

SDN enabled weighted secure-context-information transfer. In 2016 IEEE Interna-
tional Conference on Communications (ICC). IEEE, 1–6.

[32] Liming Fang, Yang Li, Xinyu Yun, ZhenyuWen, Shouling Ji,Weizhi Meng, Zehong

Cao, and Muhammad Tanveer. 2019. THP: A novel authentication scheme to

prevent multiple attacks in SDN-based IoT network. IEEE Internet of Things
Journal 7, 7 (2019), 5745–5759.

[33] Steven R Gomez, Samuel Jero, Richard Skowyra, Jason Martin, Patrick Sullivan,

David Bigelow, Zachary Ellenbogen, Bryan CWard, HamedOkhravi, and JamesW

Landry. 2019. Controller-oblivious dynamic access control in software-defined

networks. In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 447–459.

[34] Tao Hu, Zhen Zhang, Peng Yi, Dong Liang, Ziyong Li, Quan Ren, Yuxiang Hu,

and Julong Lan. 2021. SEAPP: A secure application management framework

based on REST API access control in SDN-enabled cloud environment. J. Parallel
and Distrib. Comput. 147 (2021), 108–123.

[35] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Christian Esteve Rothen-

berg, Siamak Azodolmolky, and Steve Uhlig. 2015. Software-defined networking:

A comprehensive survey. Proc. IEEE 103, 1 (2015), 14–76.

[36] Seungsoo Lee, Seungwon Woo, Jinwoo Kim, Jaehyun Nam, Vinod Yegneswaran,

Phillip Porras, and Seungwon Shin. 2022. A Framework for Policy Inconsistency

Detection in Software-Defined Networks. IEEE/ACM Transactions on Networking
(2022).

[37] Seungsoo Lee, Seungwon Woo, Jinwoo Kim, Vinod Yegneswaran, Phillip Porras,

and Seungwon Shin. 2020. AudiSDN: Automated detection of network policy

inconsistencies in software-defined networks. In IEEE INFOCOM 2020-IEEE Con-
ference on Computer Communications. IEEE, 1788–1797.

[38] Seungsoo Lee, Changhoon Yoon, and Seungwon Shin. 2016. The smaller, the

shrewder: A simple malicious application can kill an entire sdn environment.

In Proceedings of the 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. 23–28.

[39] Diogo Menezes Ferrazani Mattos and Otto Carlos Muniz Bandeira Duarte. 2016.

AuthFlow: authentication and access control mechanism for software defined

networking. annals of telecommunications 71, 11 (2016), 607–615.
[40] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:

enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[41] Jiseong Noh, Seunghyeon Lee, Jaehyun Park, Seungwon Shin, and

Brent Byunghoon Kang. 2016. Vulnerabilities of network OS and miti-

gation with state-based permission system. Security and Communication
Networks 9, 13 (2016), 1971–1982.

[42] Yustus Eko Oktian, SangGon Lee, HoonJae Lee, and JunHuy Lam. 2015. Secure

your northbound SDN API. In 2015 Seventh International Conference on Ubiquitous
and Future Networks. IEEE, 919–920.

[43] Yustus Eko Oktian, Sang-Gon Lee, and JunHuy Lam. 2018. Oauthkeeper: An

authorization framework for software defined network. Journal of Network and
Systems Management 26, 1 (2018), 147–168.

[44] Hitesh Padekar, Younghee Park, Hongxin Hu, and Sang-Yoon Chang. 2016. En-

abling dynamic access control for controller applications in software-defined

networks. In Proceedings of the 21st ACM on Symposium on Access Control Models
and Technologies. ACM, 51–61.

[45] Sandeep Pisharody, Janakarajan Natarajan, Ankur Chowdhary, Abdullah Alsha-

lan, and Dijiang Huang. 2017. Brew: A security policy analysis framework for

distributed sdn-based cloud environments. IEEE transactions on dependable and
secure computing 16, 6 (2017), 1011–1025.

[46] Phillip A Porras, Steven Cheung, Martin W Fong, Keith Skinner, and Vinod

Yegneswaran. 2015. Securing the software defined network control layer.. In

NDSS.
[47] Wei Ren, Yan Sun, Hong Luo, and Mohsen Guizani. 2021. SILedger: A Blockchain

and ABE-based Access Control for Applications in SDN-IoT Networks. IEEE
Transactions on Network and Service Management (2021).

[48] Takayuki Sasaki, Christos Pappas, Taeho Lee, Torsten Hoefler, and Adrian Perrig.

2016. SDNsec: Forwarding accountability for the SDN data plane. In 2016 25th
International Conference on Computer Communication and Networks (ICCCN).
IEEE, 1–10.

[49] Nicolas Schnepf, Rěmi Badonnel, Abdelkader Lahmadi, and Stephan Merz. 2018.

Synaptic: A formal checker for SDN-based security policies. In NOMS 2018-2018
IEEE/IFIP Network Operations and Management Symposium. IEEE, 1–2.

[50] Philip Shafer, Martin Bjorklund, Robert Wilton, and Kent Watsen. 2018. Network

Management Datastore Architecture (NMDA). Network (2018).

[51] Bhavesh Toshniwal, Kalpana D Joshi, Pragati Shrivastava, and Kotaro Kataoka.

2019. BEAM: Behavior-based access control mechanism for SDN applications.

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

In 2019 28th International Conference on Computer Communication and Networks
(ICCCN). IEEE, 1–2.

[52] Yuchia Tseng, Montida Pattaranantakul, Ruan He, Zonghua Zhang, and Farid

Naït-Abdesselam. 2017. Controller DAC: Securing SDN controller with dynamic

access control. In 2017 IEEE International Conference on Communications (ICC).
IEEE, 1–6.

[53] Benjamin E Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard Skowyra,

James Landry, Adam Bates, William H Sanders, Cristina Nita-Rotaru, and Hamed

Okhravi. 2018. Cross-App Poisoning in Software-Defined Networking. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 648–663.

[54] Haopei Wang, Lei Xu, and Guofei Gu. 2015. Floodguard: A dos attack prevention

extension in software-defined networks. In 2015 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE, 239–250.

[55] Xitao Wen, Bo Yang, Yan Chen, Chengchen Hu, Yi Wang, Bin Liu, and Xiaolin

Chen. 2016. Sdnshield: Reconciliating configurable application permissions

for SDN app markets. In 2016 46th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, 121–132.

[56] Jia-Si Weng, Jian Weng, Yue Zhang, Weiqi Luo, and Weiming Lan. 2018. BENBI:

Scalable and dynamic access control on the northbound interface of SDN-based

VANET. IEEE Transactions on Vehicular Technology 68, 1 (2018), 822–831.

[57] Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran, Heedo

Kang, Martin Fong, Brian O’Connor, and Thomas Vachuska. 2017. A security-

mode for carrier-grade SDN controllers. In Proceedings of the 33rd Annual Com-
puter Security Applications Conference. ACM, 461–473.

[58] Deqing Zou, Yu Lu, Bin Yuan, Haoyu Chen, and Hai Jin. 2018. A fine-grained

multi-tenant permission management framework for SDN and nfv. IEEE Access
6 (2018), 25562–25572.

A ACTIVE RULE DELETION MANAGER: RULE
SLAYER

Active rule deletion manager dynamically evict rules to make room

for more important rules, hence the name “rule slayer." This module

is activated iff the following two conditions are met:

(1) The mode of operation is Role-based Resource Allocation as

an Optimization Problem (Section 6.1.3).

(2) Datastore can not entertain any more storage requests (i.e.,

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 0).

Let 𝐴𝐼 denote an incoming application (having App-ID𝐴𝐼
) with a

storage requirement 𝑅𝐼 𝑦
3
and 𝐴𝐿 (having App-ID𝐴𝐿

) be an appli-

cation with lowest application priority amongst all applications in

datastore. Let 𝑅𝐿𝑙
4
be the rule with lowest priority amongst all rules

belonging to 𝐴𝐿 . This gives rise to three cases.
5

A.0.1 Case 1 (App-ID𝐴𝐼
ą App-ID𝐴𝐿

). This means that 𝐴𝐼 has

lower priority than 𝐴𝐿 . In such a case, the incoming rule (denoted

as 𝑅𝐼 𝑦) is not stored because it belongs to an application that has

lower priority than the lowest priority application inside datastore.

Since there is no active rule deletion so, there is no change in the

parametric values for𝐴𝐿 . Due to no space,𝐴𝐼 has an unmet storage

requirement (i.e., 𝑅𝐼 𝑦), which causes a change in the parametric

values of 𝐴𝐼 as shown by Eq. 15 in Table 10.

A.0.2 Case 2 (App-ID𝐴𝐼
ă App-ID𝐴𝐿

). This means that 𝐴𝐼 has

higher priority than 𝐴𝐿 . In such a case, the incoming rule (denoted

as 𝑅𝐼 𝑦) is stored at the expense of 𝑅𝐿𝑙 . Consequently, there is a

change in the parametric values for both 𝐴𝐼 and 𝐴𝐿 as shown by

Eq. 17 in Table 10.

A.0.3 Case 3 (App-ID𝐴𝐼
“ App-ID𝐴𝐿

). There are three sub-cases
if this condition is met.

3
Here 𝑦 ě 1 and the subscript 𝐼 is used to indicate that the rule belongs to𝐴𝐼 .

4
Here 𝑙 ě 1 and the subscript 𝐿 is used to show that the rule belongs to𝐴𝐿 .

5
The parameters 𝜎𝑖 and 𝜅𝑖 are untouched by this box and assumed to be 0. The initial

value for 𝛽𝐴𝐿
“ 𝛽𝐴𝐼

“ 𝜁𝐴𝐿
“ 𝜁𝐴𝐼

“ 0.

(a) Priority of rule 𝑅𝐼 𝑦 ă Priority of rule 𝑅𝐿𝑙 .

In this case, the incoming rule (i.e.,𝑅𝐼 𝑦) is not stored. Since𝐴𝐿 “ 𝐴𝐼 ,

so 𝐴𝐿 is the notation used in Eq. 16 in Table 10.

(b) Priority of rule 𝑅𝐼 𝑦 ą Priority of rule 𝑅𝐿𝑙 .

In such a case, 𝑅𝐿𝑙 is slayed to make room for 𝑅𝐼 𝑦 as 𝑅𝐼 𝑦 has more

priority than 𝑅𝐿𝑙 . Note that 𝐴𝐼 “ 𝐴𝐿 so, the notation 𝐴𝐿 is used in

Eq. 18 in Table 10.

(c) Priority of rule 𝑅𝐼 𝑦 “ Priority of rule 𝑅𝐿𝑙 .

In such a case, 𝑅𝐼 𝑦 is disregarded and computations are done using

Eq. 16. Note that the decision to disregard 𝑅𝐼 𝑦 as it has same priority

as 𝑅𝐿𝑙 is purely a judgement call (both rules have same priority so,

there is no way to decide which one should be kept).

B DUPLICATE AND CONFLICTING ACTION
RULE MANAGER: THE JUDGE

Let 𝐴1 (with App-ID
1
) and 𝐴2 (with App-ID

2
) be two applications

such that App-ID
1

ă App-ID
2
. Let 𝑅11 and 𝑅21 be two duplicate

rules/rules conflicting on action that belong to 𝐴1 and 𝐴2 respec-

tively. Moreover, 𝑅15 and 𝑅16 are two duplicate rules/rules conflict-

ing on action that belong to 𝐴1. The parameter 𝜂𝑖 (i.e., active rule

deletion in order to make space) is untouched by this module and

assumed to be 0. Further assume that initially 𝛽1 = 𝛽2 = 𝜁1 = 𝜁2 = 0.

B.0.1 Case 1 (Rule 𝑅21 arrives after Rule 𝑅11). Suppose 𝑅11 arrives
at datastore. This causes a change in the parametric values for 𝐴1,

depending on the mode of operation used (i.e., Eq. 4 - Eq. 9). The

rule passes through duplicate and conflicting action rule manager
and is stored in datastore. Next, 𝑅21 arrives and the parametric

values for 𝐴2 are adjusted using Eq. 4 - Eq. 9. When 𝑅21 enters

duplicate and conflicting action rule manager, Eirene realizes that
𝑅21 conflicts with or is a duplicate of 𝑅11. Thus, 𝑅21 is not stored in

datastore as App-ID
1

ă App-ID
2
. Thus,

𝜎2 “ 1 p7 𝑅21 cannot be storedq & 𝜅2 “ 0 (25)

where 𝜎2 is a conflicting rule that cannot be stored while 𝜅2 is a

conflicting rule that is actively deleted. The corresponding change

in the parametric values is given by Eq. 19 and Eq. 20 in Table 11.

B.0.2 Case 2 (Rule 𝑅11 arrives after Rule 𝑅21). Suppose 𝑅21 arrives
at datastore, and gets stored in datastore. Next, 𝑅11 arrives and is

recognized as a duplicate rule or rule that conflicts on action with

𝑅21. As App-ID1
ă App-ID

2
so, 𝑅21 is actively deleted and 𝑅11 is

stored. Therefore,

𝜎2 “ 0 & 𝜅2 “ 1 p7 𝑅21 is actively deletedq (34)

Eq. 21 and Eq. 22 in Table 11 formally represent the changes in

parametric values of 𝐴1 and 𝐴2.

B.0.3 Case 3 (Rule 𝑅16 arrives after Rule 𝑅15). Suppose 𝑅15 arrives
at the datastore, and gets stored. Next, 𝑅16 arrives and is detected

as a conflicting on action or duplicate rule. Thus, 𝑅15 is replaced

with 𝑅16. Formally,

𝜎1 “ 0 & 𝜅1 “ 1 p7 𝑅15 is actively deletedq (35)

Eq. 23 and Eq. 24 in Table 11 represent the changes in parametric

values.

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

Table 10: Active Rule Deletion Manager (Keys: App-ID𝑖 Ñ Application Identifier for an SDN app i, 𝜂𝑖 Ñ number of actively
deleted rules, 𝐷𝑆𝑖 Ñ Desired Storage capacity, 𝜁𝑖 Ñ Active Rule Deletion Variable, 𝛼𝑖 Ñ Residual Storage Capacity, 𝛽𝑖 Ñ Unmet
Storage Requirement).

Mathematical Representation Mathematical Representation

Case 1

(App-ID𝐴𝐼
ą

App-ID𝐴𝐿
,

appendix A.0.1)

𝜂𝐴𝐼
“ 0 pi.e., no active rule deletionq

𝜁𝐴𝐼
“ 𝜁𝐴𝐼

` 𝜂𝐴𝐼
“ 0 ` 0 “ 0 p7 𝜂𝐴𝐼

“ 0, Eq. 8q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝐴𝐼
“ 0 ` 0 “ 0

𝛼𝐴𝐼
“ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝐴𝐼

“ 0 ´ 1 “ ´1

p7 𝐷𝑆𝐴𝐼
“ 𝑅𝐼 𝑦q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 0 p7 𝛼𝐴𝐼
ă 0, Eq. 5q

𝛽𝐴𝐼
“ 𝜇 ¨ 𝐷𝑆𝐴𝐼

` 𝛽𝐴𝐼
“ 1 ` 0 “ 1 p7 𝛼𝐴𝐼

ă 0, Eq. 6q

(15) Case 3a (Priority

of rule 𝑅𝐼 𝑦 ă

Priority of rule

𝑅𝐿𝑙 , appendix
A.0.3)

𝜂𝐴𝐿
“ 0 pi.e., no active rule deletionq

𝜁𝐴𝐿
“ 𝜁𝐴𝐿

` 𝜂𝐴𝐿
“ 0 ` 0 “ 0 p7 𝜂𝐴𝐿

“ 0, Eq. 8q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝐴𝐿
“ 0 ` 0 “ 0

𝛼𝐴𝐿
“ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝐴𝐿

“ 0 ´ 1 “ ´1

p7 𝐷𝑆𝐴𝐿
“ 𝑅𝐼 𝑦q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 0 (7 𝛼𝐴𝐿
ă 0, Eq. 5)

𝛽𝐴𝐿
“ 𝜇 ¨ 𝐷𝑆𝐴𝐿

` 𝛽𝐴𝐿
“ 1 ` 0 “ 1 p7 𝛼𝐴𝐿

ă 0, Eq. 6)

(16)

Case 2

(App-ID𝐴𝐼
ă

App-ID𝐴𝐿
,

appendix A.0.2)

𝜂𝐴𝐿
“ 1 p7 𝑅𝐿𝑙 is actively deletedq

𝜁𝐴𝐿
“ 𝜁𝐴𝐿

` 𝜂𝐴𝐿
“ 0 ` 1 “ 1 p7 𝜂𝐴𝐿

“ 1, Eq. 8q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝐴𝐿
“ 0 ` 1 “ 1

𝛼𝐴𝐿
“ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝐴𝐿

“ 1 ´ 0 “ 1 p7 𝐷𝑆𝐴𝐿
“ 0q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 1 p7 𝛼𝐴𝐿
ě 0, Eq. 5q

𝛽𝐴𝐿
“ 𝜇 ¨ 𝐷𝑆𝐴𝐿

` 𝛽𝐴𝐿
“ 0 ` 0 “ 0 p7 𝛼𝐴𝐿

ě 0, Eq. 6q

Now, there is space for one more rule.

𝛼𝐴𝐼
“ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝐴𝐼

“ 1 ´ 1 “ 0 p7 𝐷𝑆𝐴𝐼
“ 𝑅𝐼 𝑦q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼𝐴𝐼
“ 0 p7 𝛼𝐴𝐼

ě 0, Eq. 5q

𝛽𝐴𝐼
“ 0 p7 𝛼𝐴𝐼

ě 0, Eq. 6q

𝜂𝐴𝐼
“ 0 pi.e., no active rule deletionq

𝜁𝐴𝐼
“ 𝜁𝐴𝐼

` 𝜂𝐴𝐼
“ 0 ` 0 “ 0 p7 𝜂𝐴𝐼

“ 0, Eq. 8q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝐴𝐼
“ 0 ` 0 “ 0

(17) Case 3b (Priority

of rule 𝑅𝐼 𝑦 ą

Priority of rule

𝑅𝐿𝑙 , appendix
A.0.3)

𝜂𝐴𝐿
“ 1 pi.e., 𝑅𝐿𝑙 is actively deletedq

𝜁𝐴𝐿
“ 𝜁𝐴𝐿

` 𝜂𝐴𝐿
“ 0 ` 1 “ 1 p7 𝜂𝐴𝐿

“ 1, Eq. 8q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜂𝐴𝐿
“ 0 ` 1 “ 1

𝛼𝐴𝐿
“ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ´ 𝐷𝑆𝐴𝐿

“ 1 ´ 1 “ 0

p7 𝐷𝑆𝐴𝐿
“ 𝑅𝐼 𝑦q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 0 (7 𝛼𝐴𝐿
ě 0, Eq. 5)

𝛽𝐴𝐿
“ 𝜇 ¨ 𝐷𝑆𝐴𝐿

` 𝛽𝐴𝐿
“ 0 ` 0 “ 0 p7 𝛼𝐴𝐿

ě 0, Eq. 6q

(18)

Table 11: Duplicate and Conflicting Action Rule Manager (Keys: App-ID𝑖 Ñ Application Identifier for an SDN app i, 𝐴𝐶𝑖
Ñ Allocated Capacity, 𝛼𝑖 Ñ Residual Storage Capacity, 𝛽𝑖 Ñ Unmet Storage Requirement, 𝜁𝑖 Ñ Active Rule Deletion, 𝜎𝑖 Ñ

Conflicting Rule that cannot be stored, 𝜅𝑖 Ñ Conflicting Rule that has been actively deleted).

Fair Resource Allocation & Role-based Resource Allocation (Eq. 11) Role-based Resource Allocation as an Optimization Problem (Eq. 12)

Case 1 (Rule 𝑅21 arrives

after Rule 𝑅11 , appendix
B.0.1)

𝛼2 “ 𝛼2 ` 𝜎2 ` 𝜅2 “ 𝛼2 ` 1 ` 0 “ 𝛼2 ` 1 pEq. 25q

𝐴𝐶2 “ 𝛼2 “ 𝛼2 ` 1 passuming 𝛼2 ě 0q

𝛽2 “ 𝛽2 ` 𝜎2 “ 𝛽2 ` 1 p7 𝜎2 “ 1q

𝜁2 “ 𝜁2 ` 𝜅2 “ 𝜁2 ` 0 “ 𝜁2 p7 𝜅2 “ 0q

(19)

𝛼2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎2 ` 𝜅2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 ` 0 pEq. 25q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼2 ě 0q

𝛽2 “ 𝛽2 ` 𝜎2 “ 𝛽2 ` 1 p7 𝜎2 “ 1q

𝜁2 “ 𝜁2 ` 𝜅2 “ 𝜁2 ` 0 “ 𝜁2 p7 𝜅2 “ 0q

(20)

Case 2 (Rule 𝑅11 arrives

after Rule 𝑅21 , appendix
B.0.2)

𝛼2 “ 𝛼2 ` 𝜎2 ` 𝜅2 “ 𝛼2 ` 0 ` 1 “ 𝛼2 ` 1 pEq. 34q

𝐴𝐶2 “ 𝛼2 “ 𝛼2 ` 1 passuming 𝛼2 ě 0q

𝛽2 “ 𝛽2 ` 𝜎2 “ 𝛽2 ` 0 “ 𝛽2 p7 𝜎2 “ 0q

𝜁2 “ 𝜁2 ` 𝜅2 “ 𝜁2 ` 1 p7 𝜅2 “ 1q

(21)

𝛼2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎2 ` 𝜅2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 0 ` 1 pEq. 34q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼2 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼2 ě 0q

𝛽2 “ 𝛽2 ` 𝜎2 “ 𝛽2 ` 0 “ 𝛽2 p7 𝜎2 “ 0q

𝜁2 “ 𝜁2 ` 𝜅2 “ 𝜁2 ` 1 p7 𝜅2 “ 1q

(22)

Case 3 (Rule 𝑅16 arrives

after Rule 𝑅15 , appendix
B.0.3)

𝛼1 “ 𝛼1 ` 𝜎1 ` 𝜅1 “ 𝛼1 ` 0 ` 1 “ 𝛼1 ` 1 pEq. 35q

𝐴𝐶1 “ 𝛼1 “ 𝛼1 ` 1 passuming 𝛼1 ě 0q

𝛽1 “ 𝛽1 ` 𝜎1 “ 𝛽1 ` 0 “ 𝛽1 p7 𝜎1 “ 0q

𝜁1 “ 𝜁1 ` 𝜅1 “ 𝜁1 ` 1 p7 𝜅1 “ 1q

(23)

𝛼1 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎1 ` 𝜅1 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 0 ` 1pEq. 35q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼1 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼1 ě 0q

𝛽1 “ 𝛽1 ` 𝜎1 “ 𝛽1 ` 0 “ 𝛽1 p7 𝜎1 “ 0q

𝜁1 “ 𝜁1 ` 𝜅1 “ 𝜁1 ` 1 p7 𝜅1 “ 1q

(24)

Table 12: Conflicting Priority and Priority Action Rule Manager (Keys: App-ID𝑖 Ñ Application Identifier for an SDN app i,
𝐴𝐶𝑖 Ñ Allocated Capacity, 𝛼𝑖 Ñ Residual Storage Capacity, 𝛽𝑖 Ñ Actively Deleted Rules, 𝜁𝑖 Ñ Conflicting Rule that cannot be
Stored, 𝜎𝑖 Ñ Conflicting Rule that has been Actively Deleted).

Fair Resource Allocation and Role-based Resource Allocation (Eq. 11) Role-based Resource Allocation as an Optimization Problem (Eq. 12)

Case 1 (Rule 𝑅41 arrives

after Rule 𝑅31 , appendix
C.0.1)

𝛼4 “ 𝛼4 ` 𝜎4 ` 𝜅4 “ 𝛼2 ` 1 ` 0 “ 𝛼4 ` 1 (Eq. 36)

𝐴𝐶4 “ 𝛼4 “ 𝛼4 ` 1 passuming 𝛼4 ě 0q

𝛽4 “ 𝛽4 ` 𝜎4 “ 𝛽4 ` 1 p7 𝜎4 “ 1q

𝜁4 “ 𝜁4 ` 𝜅4 “ 𝜁4 ` 0 “ 𝜁4 p7 𝜅4 “ 0q

(26)

𝛼4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎4 ` 𝜅4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 ` 0 pEq. 36q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼4 ě 0q

𝛽4 “ 𝛽4 ` 𝜎4 “ 𝛽4 ` 1 p7 𝜎4 “ 1q

𝜁4 “ 𝜁4 ` 𝜅4 “ 𝜁4 ` 0 “ 𝜁4 p7 𝜅4 “ 0q

(27)

Case 2 (Rule 𝑅31 arrives

after Rule 𝑅41 , appendix
C.0.2)

𝛼4 “ 𝛼4 ` 𝜎4 ` 𝜅4 “ 𝛼4 ` 0 ` 1 “ 𝛼4 ` 1 pEq. 37q

𝐴𝐶4 “ 𝛼4 “ 𝛼4 ` 1 passuming 𝛼4 ě 0q

𝛽4 “ 𝛽4 ` 𝜎4 “ 𝛽4 ` 0 “ 𝛽4 p7 𝜎4 “ 0q

𝜁4 “ 𝜁4 ` 𝜅4 “ 𝜁4 ` 1 p7 𝜅4 “ 1q

(28)

𝛼4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎4 ` 𝜅4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 0 ` 1 pEq. 37q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼4 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼4 ě 0q

𝛽4 “ 𝛽4 ` 𝜎4 “ 𝛽4 ` 0 “ 𝛽4 p7 𝜎4 “ 0q

𝜁4 “ 𝜁4 ` 𝜅4 “ 𝜁4 ` 1 p7 𝜅4 “ 1q

(29)

Case 3 (Rule 𝑅36 arrives

after Rule 𝑅35 , appendix
C.0.4)

𝛼3 “ 𝛼3 ` 𝜎3 ` 𝜅3 “ 𝛼3 ` 1 ` 0 “ 𝛼3 ` 1 (Eq. 38)

𝐴𝐶3 “ 𝛼3 “ 𝛼3 ` 1 passuming 𝛼3 ě 0q

𝛽3 “ 𝛽3 ` 𝜎3 “ 𝛽3 ` 1 p7 𝜎3 “ 1q

𝜁3 “ 𝜁3 ` 𝜅3 “ 𝜁3 ` 0 “ 𝜁3 p7 𝜁3 “ 0q

(30)

𝛼3 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎3 ` 𝜅3 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 ` 0 (Eq. 38)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼3 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼3 ě 0q

𝛽3 “ 𝛽3 ` 𝜎3 “ 𝛽3 ` 1 p7 𝜎3 “ 1q

𝜁3 “ 𝜁3 ` 𝜅3 “ 𝜁3 ` 0 “ 𝜁3 p7 𝜅3 “ 0q

(31)

Case 4 (Rule 𝑅35 arrives

after Rule 𝑅36 , appendix
C.0.4)

𝛼3 “ 𝛼3 ` 𝜎3 ` 𝜅3 “ 𝛼3 ` 0 ` 1 “ 𝛼3 ` 1 pEq. 39q

𝐴𝐶3 “ 𝛼3 “ 𝛼3 ` 1 passuming 𝛼3 ě 0q

𝛽3 “ 𝛽3 ` 𝜎3 “ 𝛽3 ` 0 “ 𝛽3 p7 𝜎3 “ 0q

𝜁3 “ 𝜁3 ` 𝜅3 “ 𝜁3 ` 1 p7 𝜅3 “ 1q

(32)

𝛼3 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 𝜎3 ` 𝜅3 “ 𝛼3 ` 0 ` 1 “ 𝛼3 ` 1 pEq. 39q

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 “ 𝛼3 “ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ` 1 passuming 𝛼3 ě 0q

𝛽3 “ 𝛽3 ` 𝜎3 “ 𝛽3 ` 0 “ 𝛽3 p7 𝜎3 “ 0q

𝜁3 “ 𝜁3 ` 𝜅3 “ 𝜁 ` 3 ` 1 p7 𝜅3 “ 1q

(33)

C CONFLICTING PRIORITY AND PRIORITY
ACTION RULE MANAGER: THE
PEACEMAKER

Let 𝐴3 (with App-ID
3
) and 𝐴4 (with App-ID

4
) be two applications

such that App-ID
3

ă App-ID
4
. Let 𝑅31 and 𝑅41 be two rules con-

flicting only on priority/both priority and action belonging to 𝐴3

CCSW ’22, November 7, 2022, Los Angeles, CA, USA. Sana Habib, Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé

and 𝐴4 respectively. Let 𝑅35 and 𝑅36 be two rules that conflict only

on priority/both on priority and action, and belong to 𝐴3. Further

assume that 𝑅35 has a higher priority than 𝑅36.

C.0.1 Case 1 (Rule 𝑅41 arrives after Rule 𝑅31). Suppose 𝑅31 arrives
at the datastore. The parametric values for 𝐴3 are modified accord-

ing to the respective equations (i.e., Eq. 4 - Eq. 9). The rule, 𝑅31,

passes through conflicting priority and priority action rule manager
and gets stored. Later,𝑅41 arrives at the datastore and the parametric

values for 𝐴4 are modified. On passing through conflicting priority
and priority action rule manager, it is discovered that 𝑅41 conflicts

with 𝑅31. Thus, 𝑅41 is discarded because App-ID3
ă App-ID

4
. Thus,

𝜎4 “ 1 p7 𝑅41 cannot be storedq & 𝜅4 “ 0 (36)

The corresponding changes in the parametric values is given by Eq.

26 and Eq. 27 in Table 12.

C.0.2 Case 2 (Rule 𝑅31 arrives after Rule 𝑅41). Suppose 𝑅41 arrives
at the datastore, and gets stored. Afterwards, 𝑅31 arrives and is

detected to be in conflict with 𝑅41. Thus, 𝑅41 is deleted from the

datastore and 𝑅31 is stored (7 App-ID
3

ă App-ID
4
). Therefore,

𝜎4 “ 0 & 𝜅4 “ 1 p7 𝑅41 is actively deletedq (37)

This leads to a change in the parametric values of 𝐴3 and 𝐴4, as

given by Eq. 28 and Eq. 29 in Table 12.

C.0.3 Case 3 (Rule 𝑅36 arrives after Rule 𝑅35). Suppose 𝑅35 arrives
at datastore, and gets stored. Afterwards, 𝑅36 approaches and is

marked as a conflicting rule. Since 𝑅35 has a higher priority than

𝑅36 so, 𝑅36 is not stored. Thus,

𝜎3 “ 1 p7 𝑅36 cannot be stored) & 𝜅3 “ 0 (38)

The corresponding changes in the parametric values are given by

Eq. 30 and Eq. 31 in Table 12.

C.0.4 Case 4 (Rule 𝑅35 arrives after Rule 𝑅36). Suppose 𝑅36 arrives
at the datastore, and gets stored. Afterwards, 𝑅35 arrives and is

identified as a rule that conflicts with 𝑅36. Since 𝑅36 has lower

priority than 𝑅35 so, 𝑅36 is deleted from the datastore and 𝑅35 is

stored. Formally,

𝜎3 “ 0 & 𝜅3 “ 1 p7 𝑅36 is actively deletedq (39)

The corresponding changes in the parametric values is given by Eq.

32 and Eq. 33 in Table 12.

D EIRENE: SCALABILITY
Consider a medium to large scale network with a storage require-

ment of 100,000 configuration rules. The SDN controllers are hor-

izontally as well as vertically scalable. Thus, the case of 100,000

rules can be catered for by breaking the storage problem into two

parts such that there are three separate SDN datastore resources:

DR1, DR2, DR3; each with a capacity to store up to 50,000 rules.

Assume DR1 and DR2 are storing rules using the Eirene framework

(with identical settings). Next, DR3 is used to do comparison of

rules stored in DR2 with DR1. Since the worst case comparison

is still with 49,999 rules so the one-time worst case delay stays at

«7ms.

The delay can be further reduced if the resources DR1, DR2, and

DR3 are subdivided; such that DR1 is divided into DR11 & DR12;

DR2 is divided into DR21 & DR22; DR3 is divided into DR31 & DR32.

Each one of the sub resources is capable of storing up to 25,000

rules. Using Fig. 2, the one-time delay for the insertion of 25,000
th

rule in the presence of 24,999 rules is under 4ms. Hence, DR11 and

DR12 store 25,000 rules each. A comparison is done between the

rules stored in DR11 and DR12 with the resulting rules stored in

DR31. Now, DR11 and DR31 collectively contain 50,000 unique rules

(with no duplicates or conflicts) while DR12 is empty (as the rules

from DR12 after comparison with DR11 rule database got stored

in DR31). Next, DR21 and DR22 store 25,000 rules, each using the

Eirene framework. The rule database of DR21 is compared with

DR22 with the resulting rules stored in DR32. This way, DR32 and

DR21 collectively contain 50,000 rules while DR22 is empty. We

refer to the collective 50,000 rule storage capacity of DR12 & DR31

as DR1231, DR21 & DR32 as DR2132, and DR12 & DR22 as DR1222.

The resulting rules after comparison between DR1231 and DR2132

are stored using the collective storage capacity of DR1222. This

way, unique 100,000 rules are collectively stored inside DR1222 and

DR1231 while DR2132 is empty.

E RELATEDWORK: ASSESSMENT
METHODOLOGY

We have used the following security assessment methodology for

notable academic research to mark whether the mitigation strategy

for a threat is covered, partly covered, or not covered.
The mitigation strategy for threat 1 in Table 4 is marked as

covered if authentication of SDN apps has been proposed, marked

as partly covered if the authentication scheme is proposed for some

SDN component other than SDN apps but can be extended to the

authentication of SDN apps, marked as not covered if the issue has

not been addressed.

The mitigation strategy for threat 2 in Table 4 is marked as cov-
ered if some authorization scheme for SDN apps is proposed while

being mindful of varying SDN app traffic and consequently vary-

ing network traffic, marked as partly covered if only authorization

strategy for SDN apps has been proposed, and not covered if the

problem is not addressed.

The mitigation strategy for threat 3 in Table 4 is marked as cov-
ered if the exact details of updating datastore capacity associated

with each SDN app is explained, partly covered if exact details are

missing or the accountability mechanism is proposed for maintain-

ing logs of API calls, etc.; it is marked as not covered if the problem

has not been addressed.

The mitigation strategy for threat 4 in Table 4 is marked as

covered if real-time conflict detection and resolution inside the

SDN configuration datastore has been covered, marked as partly
addressed if rule conflict resolution in switch’s TCAM table and the

conflict resolution strategy can be extended to resolving conflicts

inside the SDN configuration datastore, and marked as not covered
if the problem has not been addressed.

Refer to Secure Northbound Interface [22] in Table 4. Secure

Northbound Interface [22] presents a trust model that only allows

authenticated SDN apps to use datastore resources thus, the mitiga-

tion scheme for threat 1 is marked as covered. Secure Northbound

Interface [22] proposes a permission based access control model

for authorization and accountability. However, the authorization

scheme does not cover the aspects of varying application traffic

Mitigating Threats Emerging from the Interaction between SDN Apps and SDN (Configuration) Datastore CCSW ’22, November 7, 2022, Los Angeles, CA, USA.

and varying network traffic while the accountability scheme has

some missing details on how datastore capacity is updated with

every rule insertion/deletion. Thus, threat 2 and threat 3 mitigation

scheme is marked as partly covered in Secure Northbound Inter-

face [22] row of Table 4. Finally, a mitigation scheme to resolve

the problem of information inconsistency by using some form of

real-time detection and resolution of configuration rules conflicts

has not been covered. Thus, the mitigation strategy for threat 4 is

marked as not covered.

	Abstract
	1 Introduction: Future of Networks
	2 Background
	2.1 SDN Architecture: The Nits and Grits

	3 Threat Model: Motivating Threats
	4 The Problem: Obscurity
	5 Related Work
	6 System Design
	6.1 Resource Allocation Component
	6.2 Network Practitioner Component
	6.3 SDN Apps Component
	6.4 Conflict Handling Component
	6.5 Implementation

	7 Functionality Demonstration
	7.1 Scenario 1: A Multi-SDN Apps AAA Use Case
	7.2 Scenario 2: A Multi-SDN Apps Conflict Handling Use Case

	8 Security Evaluation
	8.1 A Multi-SDN Apps Small Scale Security Evaluation
	8.2 A Single-SDN App Large Scale Security Evaluation

	9 Discussion and Limitations
	9.1 Performance Overhead (One-time Delay)
	9.2 Run-time considerations

	10 Conclusion
	11 Acknowledgements
	References
	A Active Rule Deletion Manager: Rule Slayer
	B Duplicate and Conflicting Action Rule Manager: The Judge
	C Conflicting Priority and Priority Action Rule Manager: The Peacemaker
	D Eirene: Scalability
	E Related Work: Assessment Methodology

