
ViK: Practical Mitigation of Temporal Memory Safety Violations
through Object ID Inspection

Haehyun Cho
Soongsil University
Republic of Korea
haehyun@ssu.ac.kr

Jinbum Park
Samsung Research
Republic of Korea

jinb.park@samsung.com

Adam Oest
PayPal
USA

aoest@paypal.com

Tiffany Bao
Arizona State University

USA
tbao@asu.edu

Ruoyu Wang
Arizona State University

USA
fishw@asu.edu

Yan Shoshitaishvili
Arizona State University

USA
yans@asu.edu

Adam Doupé
Arizona State University

USA
doupe@asu.edu

Gail-Joon Ahn
Arizona State University and

Samsung Research
USA

gahn@asu.edu

ABSTRACT

Temporal memory safety violations, such as use-after-free (UAF)

vulnerabilities, are a critical security issue for software written in

memory-unsafe languages such as C and C++.

In this paper, we introduce ViK, a novel, lightweight, and widely

applicable runtime defense that can protect both operating system

(OS) kernels and user-space applications against temporal memory

safety violations. ViK performs object ID inspection, where it assigns

a random identifier to every allocated object and stores the identifier

in the unused bits of the corresponding pointer. When the pointer

is used, ViK inspects the value of a pointer before dereferencing,

ensuring that the pointer still references the original object. To the

best of our knowledge, this is the first mitigation against temporal

memory safety violations that scales to OS kernels. We evaluated

the software prototype of ViK on Android and Linux kernels and

observed runtime overhead of around 20%. Also, we evaluated a

hardware-assisted prototype of ViK on Android kernel, where the

runtime overhead was as low as 2%.

CCS CONCEPTS

· Security and privacy → Operating systems security; Soft-

ware security engineering.

KEYWORDS

Temporal Memory Safety Violations, Operating System Kernels

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507780

ACM Reference Format:

Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang, Yan

Shoshitaishvili, Adam Doupé, and Gail-Joon Ahn. 2022. ViK: Practical Miti-

gation of Temporal Memory Safety Violations through Object ID Inspection.

In Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’22),

February 28 ś March 4, 2022, Lausanne, Switzerland. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3503222.3507780

1 INTRODUCTION

Ideally, temporal memory safety violations, such as use-after-free

(UAF) and double-free vulnerabilities would be automatically found

during software development and testing. However, the spatial sep-

aration of allocation and deallocation code as well as the size and

complexity of software have kept automated, effective detection

techniques from working. As a result, recent research has been

looking for approaches to preventing the exploitation of the vul-

nerabilities. Recent research has aimed to forbid unsafe memory

reuse [6, 7, 12, 26, 31, 35], validate memory accesses and detect

the use of dangling pointers [23, 25, 32], or prevent the creation of

dangling pointers [11, 18, 20, 30, 34, 38] at runtime. These solutions

show promise in mitigating against temporal memory violations.

However, none of them are sufficiently scalable to be used in mod-

ern OS kernels, as they introduce high performance and/or memory

overhead or require invasive changes of the memory management

systems.

In this paper, we propose ViK, a new access validation approach

against exploits of temporal memory safety vulnerabilities in OS

kernels and user-space applications. The core idea backing ViK is

Object ID inspection: ViK assigns a random ID to every allocated

object and stores it in the unused bits of the corresponding pointer

value (virtual address). While the operating system or the user-

space program is executing, ViK inspects the pointer value before

each dereference and ensures that the pointer value references

the original object for which it was created. ViK also inspects the

pointer value before deallocating the object. This design endows

271

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507780
https://doi.org/10.1145/3503222.3507780

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

ViK with advantages in false positive/negative rates, memory usage,

and runtime overhead. First, by storing metadata in pointer values,

ViK maintains low memory overhead (averaging 9% on for SPEC

CPU 2006, lower than any mitigation approaches). Second, ViK is

thread-safe (and thus, can scale to OS kernels) because it does not

manipulate shared data structures in memory. Third, by not relying

on data-flow analysis or pointer tracking for identifying the location

of pointers, ViK does not have false negatives that stem from type-

unsafe pointers or pointer values temporarily stored in registers or

on the stack, whereas existing solutions may introduce such errors

and fail to mitigate exploits because of them [6, 12, 18, 30, 34].

Runtime overhead determines the practicality of temporal mem-

ory safety defenses. To minimize the runtime overhead caused by

pointer inspections, ViK employs a sound static analysis to ex-

clude safe pointer dereferences and only protects potentially unsafe

ones. In the experiment on SPEC CPU 2006, ViK exhibits runtime

overhead of about 10% on average, which is similar to a userspace-

specific state-of-the-art UAF defense, MarkUs [6], but higher than

another userspace-specific mitigation, FFmalloc [35]. The evalua-

tion also shows that ViK-protected OS kernels have overall 20%

system performance overhead on both Linux kernel and Android

kernel. ViK is the first mitigation approach against temporal mem-

ory safety violations that scales to modern OS kernels.

Validating memory accesses and employing unused bits in point-

ers are not new ideas. They have been used in previous work, such

as CETS and Baggy Bound [8, 25]. However, the access validation

approach are commonly believed to introduce prohibitively high

performance overhead, and thus, it is impossible to make a practical

defense. We revisit the access validation approach in this paper.

Through careful and heavy optimizations, we demonstrate the fea-

sibility of applying access-validation-based UAF defense on real-

world, complex software, such as OS kernels. The optimizations

used in ViK will benefit other runtime defenses.

The pure-software version of ViK does not rely on hardware

features, which makes it applicable to legacy hardware. Nonethe-

less, emerging hardware features can bring substantial benefit: By

employing the Top Byte Ignore (TBI) feature of AArch64 proces-

sors, we implemented a hardware-assistant ViK variant, ViKTBI ,

that achieves an average full-system runtime overhead of less than

2% when applied on Android kernels. As a result, we are currently

deploying ViKTBI in OS kernels in smart-automotive consumer de-

vices in the real world. To our knowledge, this makes ViK the first

kernel-level temporal memory safety mitigation to be deployed in

a real-world product.

Contributions. The paper makes the following contributions:

• We introduce ViK, a novel, lightweight, and widely applica-

ble mitigation against temporal memory safety violations.

• We implement a prototype of ViK as LLVM passes and apply

it as both the first OS kernel mitigation against temporal

memory safety violations (Linux kernel on x86-64 and An-

droid kernel on AArch64) and a mitigation for user-space

applications.

• We thoroughly evaluate the effectiveness and overhead of

ViK on two OS kernels and user-space applications.

2 BACKGROUND

Temporal memory safety violations occur if a dereferenced pointer

no longer points to the original object. Such violations help attack-

ers compromise computers with vulnerable operating systems and

user-space programs, as they can be used for privilege escalation or

arbitrary code execution. For ease of illustration, we will consider

use-after-free (UAF) vulnerabilities as an example to show the im-

plications of temporal memory violations and motivate the design

of our approach.

2.1 Use-After-Free Exploits and Defenses

A UAF vulnerability exists when a pointer value can still be derefer-

enced after deallocation. To exploit a UAF vulnerability, an attacker

must deallocate a victim object and create a dangling pointer. A

victim object is a memory object that has been deallocated through

a deallocation function (e.g., free()), and a dangling pointer has a

pointer value that points inside a victim object. The attacker will

then re-allocate the dereferenced memory region to another object

and use the dangling pointer to read from or write to this newly

allocated-object, without the constraints that would normally be

applied when using the original pointer.

Specifically, exploiting a UAF vulnerability requires the following

three steps: (1) Creating a dangling pointer, (2) allocating an object

to overlap with the deallocated victim object, to which the dangling

pointer points, and (3) dereferencing the dangling pointer. Hence, to

defend against UAF attacks (and any attack that exploits temporal

memory safety violations), it suffices to stop the attack at any of

these three steps. Previous work has proposed approaches that

cover each of the steps. We classify previous work by the three

following types based on the above three steps.

Pointer invalidation. Defenses designed to prevent the creation

of a dangling pointer either invalidate pointers that point to deal-

located memory regions or prevent the deallocation of an object

if there are pointers that point to it [11, 18, 20, 30, 34, 38]. These

defenses all maintain additional metadata to track the relationships

between pointers and their corresponding objects (memory alloca-

tions). Compared to approaches based on safe memory allocation

(which will be discussed later), pointer invalidation techniques

impose lower memory overhead. However, pointer invalidation

methods usually incur substantial runtime overhead because they

have to monitor memory allocations and maintain relevant meta-

data. In multi-threaded programs, the use of joint metadata could

also impose a high-performance overhead because the metadata

must be updated in a thread-safe way [30]. Additionally, due to the

difficulty (and infeasibility) of performing a sound and complete

data flow analysis on programs in general, pointer invalidation

defenses inevitably suffer from false negatives. For instance, these

defenses do not track the propagation of pointer values through

type-unsafe pointers. In addition, they cannot track and invalidate

pointers which are stored in registers and on the stack, which can

result in further false negatives [11, 18, 34, 38].

Safememory allocation. For OS kernels, memory allocation tech-

niques such as the SLUB allocator aim to increase the difficulty of

exploiting UAF vulnerabilities. The allocator guarantees that a ker-

nel object only overlaps with a deallocated object with the same

272

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

size. However, SLUB does not completely mitigate the exploitation

of UAF vulnerabilities [37].

There are several similar mitigations designed to prevent the

re-allocation of objects to the memory areas previously occupied by

a victim object [7, 10, 12, 26, 31]. Although these mitigations make

UAF exploits unfeasible by allocating each object in a unique virtual

memory area, they tend to incur high memory overhead due to the

use of new allocation policies. While, recently proposed user-space

memory allocators, MarkUs [6] and FFmalloc [35], showed good

performance overhead but still impose high memory overhead.

Access validation. Several approaches attempt to prevent UAF

attacks by validating every memory access that involves a pointer

dereference [23, 25, 32]. While these approaches provide security

guarantees and acceptable memory overhead, they all incur substan-

tial runtime overhead because they must check every pointer deref-

erence or update metadata on a regular basis during runtime [25].

Recently, another access validation approach, PTAuth [23], was pro-

posed. Despite the improvement, it still imposes high runtime over-

head (26% for selected SPEC 2006 benchmarks on average). Also,

PTAuth currently does not support multi-threaded programs [23].

2.2 Unused Bits in 64-Bit Virtual Addresses

64-bit architectures use 64-bit virtual addresses. However, most

modern 64-bit architectures do not fully utilize the 64-bit virtual

address space. For example, x86-64, AArch64, RISC-V, MIPS, and

OpenSPARC only support virtual addresses up to (or less than) 48

bits, which correspond to a virtual address space of at most 256

TB1 [9, 14, 15, 22, 33]. We observe that the most significant 16 bits

in every pointer value are currently unused for data pointers on

most processors.

These unused bits have not gone unnoticed. ARM announced

pointer authentication instructions in the ARMv8.3-A instruction

set, which uses the unused bits in 64-bit pointers to sign and authen-

ticate virtual addresses [29]. To maintain the integrity of pointers

in specific contexts, developers can generate a pointer authenti-

cation code (PAC) and store it in place of the unused bits. This

approach is used for detecting (and verifying) changes to a pointer

value (i.e., address) rather than validating the relationship between

a pointer and a virtual address to which the pointer points. One

typical example of pointer authentication is using it to protect the

stack pointer. Unfortunately, pointer authentication instructions

are not able to prevent UAF vulnerabilities directly because UAF

can occur regardless of the pointer’s authenticity [19]. Therefore,

Farkhani et al. proposed PTAuth that prevents UAF exploits by

using the PAC [23]. However, even with the aid of the PAC, PTAuth

could not avoid high runtime overhead.

We note that ViK does not exclude the use of PAC but comple-

ments it by providing additional protection on relationships be-

tween data pointers and memory objects. It is even possible to use

ViK and PAC together on the same pointer similar to PTAuth [23].

In addition, ARM introduced Memory Tagging Extension (MTE)

in ARM v8.5 [2] and Application Data Integrity (ADI) is enabled in

a number of SPARC processors (M7, M8, S7, T7, and T8) [27]. With

1On x86-64, the most significant 16 bits of a virtual address (from the 48th bit to the
63rd bit) must be the same as the 47th bit. Otherwise, the processor will raise an
exception when accessing the address.

Source

Code

ViK-
protected

Program

LLVM Compiler Infrastructure

Static
Instrumentation

Compile

TransformationStatic Analysis

obj *ptr = alloc(obj);

 …

*ptr = 0xBEEF;

 …

free(ptr);

 …

ID

obj

ID || VA

ptr

if (ID in ptr

 == ID in obj)

 *ptr = 0xBEEF;

…

if (ID in ptr

 == ID in obj)

 free(ptr);

Figure 1: Overview of the static instrumentation for apply-

ing ViK and a ViK-protected program.

MTE, a tag is assigned to each allocated memory region, and only a

pointer that has the same tag can access the region. Similarly, ADI

utilizes version numbers stored in the unused bits of application’s

memory pointers and the memory they point to. We expect that

MTE and ADI can help prevent memory errors. However, the size of

a tag in MTE and a version number in ADI is just 4 bits [5, 17], and

thus, can only have 16 possible values. Also, how MTE and ADI can

be automatically applied to OS kernels is an open research question.

Currently, ADI can be used for user-space programs on Linux and

Oracle Solaris [17, 27], but Linux kernel support for using MTE

in user-space programs remains in development [13]. It, thus, is

important to mitigate temporal memory safety violations for OS

kernels and for the large set of processors, including the latest Intel

chipsets, that do not offer hardware features for detecting temporal

memory errors.

3 OVERVIEW

ViK identifies all allocation and pointer dereferencing sites and

performs static instrumentation on the LLVM bitcode to insert

object-ID-specific logic. Specifically, ViK replaces each memory

allocator with a new one (allocvik (𝑥)) and adds an object-ID check

(inspect (𝑝)) at (1) pointer dereferencing sites and (2) when an object

is deallocated as defined in Section 5.

The core of ViK consists of the following three main steps:

I. ViK assigns a random object ID to an object when one is allo-

cated in the heap memory.

II. ViK copies the assigned object ID to the unused bits of a pointer

value and to a reserved field at the base of the newly allocated

object. This way, ViK creates a correspondence between the

pointer value and the object.

III. At runtime, when the pointer value is dereferenced, ViK in-

spects the object ID and allows the dereference only when the

ID stored in the pointer value matches the one in the object.

Also, ViK inspects the object ID when an object is freed to

prevent the double-free.

Threat model. Similar to existing approaches [6, 12, 20, 30, 34],

we especially focus on heap-related temporal memory safety vul-

nerabilities as stack-based UAF or double-free vulnerabilities can

273

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

be handled by use-after-scope or escape analysis [6, 12]. In addi-

tion, such stack-base UAF vulnerabilities are rare in reality. Ker-

nel Address Sanitizer (KASan) stopped the support of detecting

stack-related UAF errors because the detector is considered łalmost

entirely uselessž [4].

Dynamic instrumentation in ViK. To maximize compatibility

with legacy programs and systems, ViK is designed to be indepen-

dent of hardware support on 64-bit architectures. By embedding

object IDs directly into pointer values, ViK avoids two common

dependencies, relied on by other defenses, that cause excessive

runtime overhead, memory overhead, and concurrency challenges:

the use of in-memory central metadata and the tracking of pointer

propagation. Because it is stored in the pointer itself, object IDs

used by ViK always move with the pointer value to which they

belong whether the pointer value is loaded to a register, propagated

into other pointers, or spilled onto the stack. However, a pointer

value might not point to the base address of an object. To find the

base address of any object pointed by a protected pointer value, ViK

embeds a base identifier into each object ID, which will be discussed,

together with the design of object IDs, in Section 4.

Static optimization in ViK. Our design allows it to scale to OS

kernels. To accomplish this, ViK must be able to defend programs

that have extreme numbers of pointer accesses (e.g., there are about

2.3 million pointer dereferences in Linux kernel 4.12), and naïvely

inspecting every memory access will incur an impractical (or, mini-

mally, unnecessary) runtime overhead. Therefore, we aim to min-

imize the number of pointers to inspect by limiting the dynamic

instrumentation only to those dereferencing sites that are poten-

tially unsafe. To this end, ViK conducts an inter-procedural static

data-flow analysis to identify memory accesses that are considered

to be safe from UAF exploits and exclude them from the inspection.

One result of this optimization is that ViK omits object ID in-

spection on dereferences of pointers that are never stored in global

regions or the heap, deeming them łUAF-safe.ž Because these tempo-

ral pointer values only exist on the stack, have a very short lifetime,

and are generally accessed by a limited amount of code, their use as

a dangling pointer in a UAF exploit is extremely unlikely.2 There-

fore, ViK does not inspect pointer values that are only stored on

the stack and are never copied to the heap or into global variables.

Prior work shares this trade-off: For example, DangNull only tracks

pointers located on the heap [18]. Our protection model covers

more dereference sites than DangNull [18] and the same amount of

dereference sites as CRCount [30] and pSweeper [20]. Additionally,

ViK covers pointer values in registers, weak-typed pointers, and

pointers that are spilled onto the stack. We will extensively discuss

this in Section 5.

Mis-detections. ViK’s design guarantees an absence of false posi-

tives (mistaken UAF detection of UAF though it cannot take place),

but false negatives (missed detections of UAF though it can take

place) can occur if two objects are assigned the same object ID or if

a pointer operation assumed to be UAF-safe is actually attackable.

For the former case, object ID collisions occur with a very low prob-

ability. We believe that there is sufficient entropy in the object IDs

to defeat an attacker’s attempt of circumvention as we will discuss

2Note that, if a heap-stored dangling pointer is used to attack the object pointed to
these UAF-safe pointers, ViK will still catch the attack.

Identification Code Base Identifier

63 X+1 X 48 0

Bit [63:x+1] = Identification code

 —> a pseudo-random number

Bit [x: 48] = Base identifier

 —> the middle part of an object’s base address

Pointer

Figure 2: The object ID used in ViK.

in Section 4.2 and Section 7.3, respectively. For the latter case, we

show that ViK can catch the case, which we term delayed mitigation

and will discuss in Section 7.3.

4 OBJECT ID

We present how ViK generates object IDs (Section 4.1) and then

further discuss object ID entropy (Section 4.2).

4.1 Generating Object IDs

As depicted in Figure 2, an object ID has 16-bits and is comprised

of two parts of variable lengths.

Identification code. The identification code is a random number

generated by the ViK allocator (defined in Section 5). ViK uses the

identification code to identify each allocated object.

Base identifier. A pointer value does not necessarily point to the

base address of an object; instead, it may point to any field inside the

object. We need to be able to map a pointer value to the base address

of the object to which it points so that ViK can find the object ID,

which is stored as the first member of the object. Therefore, ViK

introduces a base identifier, which is used to find the base address

of any object.

ViK aligns allocated objects to a predefined alignment of 2𝑋

bytes, which essentially creates slots of at least 2𝑋 bytes. By aligning

the addresses of objects, the least significant 𝑋 bits of all objects’

base addresses must be zero. An object may require one or more

slots depending on its size. For example, if a slot is 16 bytes, a

24-byte object will use two slots.

ViK uses two predefined constants 𝑀 and 𝑁 to determine the

alignment (which is also the size of each slot). 2𝑀 is the maximum

size (in bytes) of objects that can be covered by using slots of size

2
𝑁 (bytes) with a base identifier of𝑀−𝑁 bits. For example, suppose

𝑀 and 𝑁 are 12 and 6, respectively; the maximum size of any object

is 212 = 4096 bytes; and the size of each slot is 26 = 64 bytes. The

base identifier will be 12 − 6 = 6 bits long.

Once the constants are determined, the base identifier can be

calculated from the start address of an allocated memory region as

shown by Lines 1ś3 of Listing 1. During runtime, ViK can recover

the base address of an object from any pointer value, as in Lines 5ś7

of Listing 1. ViK only uses bitwise operations to find base addresses

of objects. It does not need memory accesses, which helps keep

runtime overhead low.

Determining the constants.𝑀 and 𝑁 must be configured before

ViK’s instrumentation. Since slots are the smallest allocation unit

in ViK, using large slots can cause excessive memory overhead.

ViK asks the user to specify 𝑀 and 𝑁 with the assistance of the

knowledge of object sizes. ViK helps users to determine optimal

choices of the two parameters by identifying sizes of all the involved

objects in the target program, which is straightforward to do with

274

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

1 get_base_identifier(pointer, M, N):

2 BI = (pointer & (2𝑀 − 1)) >> (N);

3 return BI;

4 get_base_address(pointer, M, N, BI):

5 BA = (pointer & ∼(2𝑀 − 1)) | (BI << N);

6 return BA;

Listing 1: Pseudo code for extracting the base identifier and

recovering the base address of an object fromapointer value.

Both operations only use bitwise instructions.

a compiler pass. Note that determining the optimal𝑀 and 𝑁 is a

one-time effort for each target program. We will demonstrate the

process of determining𝑀 and 𝑁 on Linux kernel in Section 6.3.

4.2 Object ID Collisions

The effective entropy of an object ID is equal to the length of

identification code. The base identifier does not add any security:

As long as the attacker allocates an object at the exact same address

where the victim object was placed, this newly allocated object will

have the same base identifier as in the victim object. This entropy

that ViK provides may seem low, but it is sufficient to stop attacks.

In our evaluation, we used 10-bit identification code (which has

a collision rate of about 0.09%), and ViK successfully defeated all

attacks that use known UAF vulnerabilities in Linux kernel without

any collision of object IDs. 10-bit entropy is equal or higher than

KASLR implementations in OS kernels [16]. Further, for a successful

UAF attack, the attacker must re-allocate an object at the location

of the victim object and ensure that it has the same random object

ID. In kernel UAF attacks, the attacker has only one chance: The

kernel will panic upon failed attacks due to an invalid memory

access via a pointer value returned from the inspect() function

(Definition 5.2). Although the 0.09% collision rate may not seem

very low, bypassing ViK will still be unlikely in practice.

5 INSTRUMENTATION

In this section, we discuss ViK’s core logicÐthe instrumentation

process. While ViK has a straightforward core idea, its true power

lies in its scalability. We identify pointers that are immune from

UAF vulnerabilities (coinedUAF-safe pointers in Section 5.1) through

performing a static data-flow analysis on the target program (Sec-

tion 5.2), and exclude these pointers from ViK’s protection. This

optimization allows ViK to only protect a small subset of pointers,

which significantly reduces runtime overhead and enables ViK to

protect real-world, complex software such as OS kernels. Then ViK

instruments the LLVM bytecode of the target program to insert

pointer-inspection logic (Section 5.3).

Common Terms. We define terms that we will use throughout

this paper: the memory allocator and the inspect function.

Definition 5.1. ViK’s memory allocator (allocvik ()) allocates in

heap memory a chunk of a specific size (𝑥) and returns its start

address (𝑝) along with an object ID (𝑖𝑑). The object ID is also stored

in the allocated chunk.

allocvik (𝑥) → 𝑝𝑖𝑑 , 𝑖𝑑 ∈ [𝑝...(𝑝 + 𝑥)] ∈ {𝑚𝑒𝑚ℎ𝑒𝑎𝑝 }

𝑝𝑖𝑑 is the combined representation of both 𝑝 and 𝑖𝑑 , where 𝑖𝑑 is

stored in unused bits of 64-bit pointers.

Definition 5.2. The inspect function (inspect (𝑝)) returns 𝑝 if and

only if the 𝑖𝑑 in 𝑝 matches the 𝑖𝑑 in a memory object where 𝑝 points

to.

inspect (𝑝𝑖𝑑) → 𝑝 ⇔ 𝑖𝑑 ≡ 𝑝 ∈ {𝑚𝑒𝑚ℎ𝑒𝑎𝑝 } ∧ 𝑖𝑑 ∈ [𝑝...(𝑝 + 𝑥)]

Therefore, in ViK-protected programs, UAF attacks are mitigated

because one of the following two cases will hold for dangling point-

ers: (1) it will have an object ID that is different from the ID of the

object to which it points; or (2) it will not point to a valid memory

region on the heap.

5.1 UAF-Safe Pointers

The runtime overhead of ViK is proportional to the number of

pointer inspection sites that are inserted for validating memory

accesses. Therefore, the goal of our optimization is to minimize the

number of calls to the inspect function in the protected program.

Our following insight allows us to exclude calls to the inspect func-

tion for a large portion of pointers without negatively impacting

the quality of defense.

Insight. Our insight is that pointer values that are only stored on

the stack and never copied to heap or global regions are immune

from being used in UAF attacks. We regard these pointer values,

and all memory accesses using these pointer values, UAF-safe, and

exclude them from ViK’s protection. ViK performs a static data-flow

analysis to find UAF-safe pointers, which we detail in Section 5.2.

The following text presents our reasoning.

Pointer values that are stored only on the stack are usually not ex-

ploitable, since these pointer values often have a short life time, i.e.,

the window between when these pointers are freed (thus, they be-

come dangling pointers) and when these pointers are dereferenced

again (if that ever happens) is extremely small. This is because the

life time of stack variables are bounded to functions, and when a

function returns, its stack-located pointer values will no longer be

used. Such a small window makes it extremely difficult for attack-

ers to exploit these stack-located pointers by allocating objects to

overlap with the freed victim object. In comparison, pointer values

that are stored in heap or global regions tend to have much longer

life times, which make it easier for attackers to purposefully control

memory allocation and build UAF exploits. State-of-the-art UAF de-

fenses, such as DangNULL [18], makes the exact same assumption.

Therefore, from a security aspect, our insight is reasonable.

Exception. The only possible UAF exploitation case that is cur-

rently known, with a strictly stack-located pointer value, is leverag-

ing a double-free bug that can cause a UAF error. This is illustrated

in Figure 3. ViK always inspects the pointer and checks its object

ID when an object is deallocated. Hence, ViK successfully detects

this exploitation attempt at the time when double-free happens.

UAF-safety. Memory accesses using UAF-safe pointer values are

considered UAF-safe unless these pointer values are copied to global

variables or the heap. Any pointer value that is copied from the

heap or global variables is considered UAF-unsafe. We formally

define how to determine UAF-safety as follows.

Definition 5.3. Any pointer value that points to a global or a stack

variable is UAF-safe. Also, a pointer value that points to the heap is

UAF-safe if and only if the pointer value has never been stored in

the heap or a global variable.

275

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

The freed virtual_address is
assigned to ptr

function add_item()

Thread 2 — use-after-free

struct obj *ptr = kmalloc(…);

ptr->num = 10; // UAF error

A UAF error occurs, because ptr
equals to virtual_address

2

4

Double-free of virtual_address

function delete_item()

Thread 1 — double-free

kfree(virtual_address);

ViK detects this double-tree

kfree(virtual_address);1

3

Figure 3: In Thread 2, a UAF occurs with a pointer value

stored only on the stack by the double-free bug at ③ in

Thread 1. This type of UAF error can be exploited if an at-

tacker can allocate a new object between ③ and ④. ViK in-

spects the object ID when an object is deallocated at ③ and

stops the attack.

This states that only globally known pointer values pointing to

the heap are relevant to exploiting UAF vulnerabilities.

Definition 5.4. Assuming that a function takes a pointer value as

one of its arguments, this pointer value is UAF-safe if and only if

the pointer value is UAF-safe in the caller function.

When only UAF-safe pointer values are used as arguments of

function calls, these arguments are UAF-safe in the callee function

since they are still used as stack variables and may not be accessed

by other threads unless they are copied to a global variable or the

heap.

Definition 5.5. Assuming that a function returns a pointer value,

the left-hand-side (lhs) pointer value at the call site in the caller

function is UAF-safe if and only if the pointer value is UAF-safe in

the callee function

If the returned pointer value is UAF-safe at the return site of the

callee function, the lhs pointer value at the call site will be a local

variable in the caller function before it is copied to a global variable

or the heap. Hence, this pointer value is still UAF-safe before the

copying happens. However, if we do not know whether or not

the returned pointer value is UAF-safe in the callee function, for

soundness, we must make an under-approximation by assuming

that the pointer value in the caller function is UAF-unsafe from

when the pointer value is returned. This can happen when our

analysis does not consider the callee function or cannot determine

the UAF-safety of a pointer value returned by the callee function.

Likewise, any pointer values that are not UAF-safe are considered

to be UAF-unsafe for soundness.

5.2 Determining UAF-Safety

ViK employs static data-flow analysis to determine if a pointer value

is UAF-safe at a site where it is dereferenced. For accuracy, ViK’s

static analysis is both flow-sensitive and path-sensitive. In intra-

procedural analysis, since the UAF-safety of a pointer value may

change depending on its execution path, simply backtracking data

flows is insufficient to determine the UAF-safety of a pointer value

at arbitrary pointer operations. To consider all possible cases that

affect the UAF-safety of a pointer value, our static analyzer contains

a Reaching Definition Analyzer (RDA) that works on LLVM bitcode

instructions. The RDA recovers all possible data flows that can

reach a pointer operation. We regard a pointer value as UAF-safe if

and only if all its uses are UAF-safe according to Definitions 5.3, 5.4,

and 5.5.

Step 1: Intra-procedural Analysis. We conduct an intra-proce-

dural analysis on each function, to find UAF-safe pointer values, by

analyzing all pointer operations in a function. To this end, we exe-

cute RDA for every pointer operation. According to Definition 5.3,

a pointer value is UAF-safe if it points to a stack variable or a global

variable. In such cases, ViK does not place inspect () functions for

that pointer value. Pointer values copied from the heap or global

variables must be inspected by ViK because they are considered

UAF-unsafe.

Next, we mark a pointer value as UAF-unsafe if the pointer

variable may hold a return value from another function. As the first

step is intra-procedural, we do not know if the returned pointer

value is UAF-safe or not. However, we mark pointer values with

return values returned from basic allocators (e.g., malloc() in libc

or kmalloc() in the Linux kernel) as UAF-safe, since the pointer

values returned by basic allocators are obviously UAF-safe. Lastly, if

a function argument is a pointer value, we deem this pointer value

UAF-unsafe. The UAF-safety of these pointers can be updated after

finding UAF-safe arguments and return values in future steps.

Step 2: Analyzing UAF-safe heap addresses. Once the initial

intra-procedural analysis is complete, we build a call graph for each

module (a source file or an object file after compiling) of the target

program. The call graph is used to determine the UAF-safety of

pointer values in our inter-procedural analysis.

First, we analyze pointer values that hold the pointer values

returned from basic allocators. Note that immediately after a basic

allocator returns, the pointer value (which is the address of the

newly allocated object) is unknown to other threads. If there is

an instruction that copies a pointer value to a global variable or

the heap, the pointer value must become UAF-unsafe after the

execution of the store instruction. Tracking data flows related to

these pointer values is straightforward since they are local variables

located within the stack frame.

Step 3: Finding UAF-safe function arguments. To find UAF-

safe arguments for every function call, we visit functions from

the dominator node based on the call graph. We check every call

instruction and its arguments. If a pointer is used as an argument,

we decide whether or not the argument is UAF-safe. We add an

attribute to the argument to mark it, only if an argument is UAF-safe

for every case before the call instruction. We repeat this process

until we have visited all functions in the call graph. Because we

limit the range of our static analysis to a single module, we omit to

check arguments of functions that escape the analysis scope.

If an argument of a function was marked as UAF-safe, we visit

the function to run RDA again to change the UAF-safety of pointers

in each pointer operation that we visited before.

Step 4: Finding UAF-safe function return values.We find UAF-

safe return values from the post-dominator nodes in the call graph.

Similar to the process of finding safe arguments, we visit func-

tions that return a pointer value and analyze their return values.

In a function, it is possible to have multiple return instructions

depending on execution paths. Therefore, we perform a path- and

flow-sensitive analysis for each return instruction and decide their

UAF-safety. Only if all possible return values are UAF-safe, do we

mark the pointer value as a UAF-safe. As in Step 3, it is necessary

276

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

to execute the RDA again for every function after finding UAF-safe

return values. The UAF-safety of pointer values can be changed

depending on the UAF-safe return values.

Step 5: Finding thefirstmemory access in a function.Through

the previous analyses, the UAF-safety of all pointer values has been

decided. In the last step, we optimize the number of 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () func-

tions for each function. The idea of this step is to inspect only

the very first pointer operation of a UAF-unsafe pointer value in a

function, and thus, UAF-unsafe pointer values are inspected once

in every function. We carefully take this step using RDA to detect

changes of pointer values along all possible execution paths. We

thus are able to find the first memory access among pointer opera-

tions using the same pointer value. This optimization significantly

decreases the runtime overhead, but it may lead to false negatives.

We discuss its security implications further in Section 7.3.

5.3 Transformation

In the transformation phase, we first insert the 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () function

before pointer operations that ViK must inspect during runtime.

In the 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () function, ViK does not store the restored virtual

address back to memory, but stores it only in a register temporarily

and accesses the heap by referencing the register. We thus need

to insert a 𝑟𝑒𝑠𝑡𝑜𝑟𝑒 () function before all the other pointer opera-

tions using ViK-protected pointer values. The 𝑟𝑒𝑠𝑡𝑜𝑟𝑒 () function is

used to temporarily recover the canonical form of a virtual address

through only a bitwise operation. Consequently, ViK-protected

pointer values must go through either the 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () or 𝑟𝑒𝑠𝑡𝑜𝑟𝑒 ()

function before a pointer operation. When deallocating an object,

only the 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () function is used. ViK inlines these functions

at each inspection site. Compared to inserting a call instruction

that invokes the inspection function, inlining increases the size of

prgrams but it is critical to lowering the runtime overhead.

Next, ViK replaces function calls to basic allocators and deallo-

cators with call instructions that will invoke the wrapper functions.

When a new object is allocated, the wrapper functions will generate

an object ID, store the object ID at the base address of the object,

and return it to the caller as part of the pointer value. In wrap-

pers for deallcaotors, ViK inspects the object ID before an object is

deallocated.

Pointer arithmetic. Since ViK only uses the unused bits of a

pointer value, all legal pointer arithmetic operations (ł+ž, ł++ž, ł-ž,

and ł–ž) can be used on ViK-protected pointers without restoring

them first. In rare cases, pointer values may be used in a comparison

(e.g., ptr1 == ptr2), where the object IDs in the two pointer values

are different if they are not derived from the same base pointer. In

such cases, ViK will restore the pointer values before comparing

pointers.

6 IMPLEMENTATION

We implement ViK in both OS kernels (Linux kernel 4.12 on x86-64

and Android kernel 4.14 on AArch64) and user-space applications.

Also, we implement ViKTBI using the Top Byte Ignore (TBI) feature

of recent ARM processors.

1 void inspect(pointer_value) {

2 PTR_ID = pointer_value >> 48;

3 BI = PTR_ID & 0x003f;

4 BA = (pointer_value & ∼(2𝑀 − 1))|(BI << N)|0xffff000000000000;

5 OBJ_ID = *BA;

6 pointer_value = pointer_value & (∼(PTR_ID ^ OBJ_ID) << 48); /*If

two object IDs do not match, dereferencing this new

pointer_value will raise an exception.*/}

Listing 2: The pseudocode of the inspect () function which

only consists of bitwise operations and a load operation for

minimal execution overhead. Protected pointer values are

restored to their canonical forms if object IDs are matched.

6.1 Kernel Implementation

ViK is mostly architecture-agnostic for user-space and kernel pro-

tection, as long as unused pointer bits are available on the target

architecture. The only step to adapt ViK to OS kernels is to patch

a small amount of inline assembly code, such as inline functions

implemented in atomic.h, because LLVM IR passes cannot analyze,

modify, or rewrite assembly code.We added or modified 446 and 363

lines of code for Linux and Android kernels, respectively. The Linux

kernel has many basic memory allocators, and our implementa-

tion handles all allocators of the kmalloc and kmem_cache_alloc

family. Note that we excluded source code related to the booting pro-

cess from instrumentation because these functions will no longer

execute after booting is complete.

Inspection logic. Since the inspect () function checks every pointer

dereference, its implementation is critical to minimizing ViK’s run-

time overhead. Therefore, we implemented the inspect () function

in a conditional-instruction-free manner. We only use bitwise in-

structions to inspect pointer values, however, the inspect () function

must still raise an exception when a pointer value and an object

have different object IDs. The key idea is outsourcing the job of

raising exceptions upon unmatched object IDs to the CPU.

Listing 2 shows the pseudocode of inspect () function that con-

sists of bitwise instructions and one memory access for loading the

object ID from the heap. First, the function extracts the object ID

from a pointer value by bit shifting (Line 3). Second, on Lines 4 and

5, it obtains the base identifier and the base address of the object.

Third, it loads the object ID from the actual object stored in memory.

Then, the inspect () function performs a bitwise XOR operation using

object IDs stored in the pointer value and the object. The result of

this operation is used for a bitwise AND operation with the pointer

value. If the two object IDs are identical, the pointer value will be

of the canonical form (for the kernel, all the unused bits will be 1),

and thus, the pointer value will be properly dereferenced and the

corresponding object will be accessed. Otherwise, the processor

will raise an exception.

Enforcing memory alignment. In ViK-protected programs, all

memory objects must be located at aligned memory addresses that

are derived from the constant 𝑁 , which is used for generating the

base identifier. However, the basic allocators of the Linux kernel

do not guarantee this memory alignment requirement. Therefore,

we enforce memory alignments by wrapping basic allocators in

custom wrapper functions in which additional bytes are added to

enforce alignment.

277

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

Table 1: The sizes of structures dynamically allocated in

Linux kernel 4.12. Roughly 98% of structures is smaller than

4 KB.

Allocation size (byte) 𝑀 𝑁 𝑀 − 𝑁 Alignment Percentage

𝑥 < 256 8 4 4 16 76.73%
256 ≤ 𝑥 < 4096 12 6 6 64 21.31%

The wrappers execute the following operations: (1) When an

object is allocated, they allocate (2𝑁 + 8) bytes more than the size

of the object, where 2𝑁 bytes is the size of a basic alignment unit.

The additional 8 bytes are used for storing an object ID. (2) The

wrappers then determine a base address that is aligned to 2𝑁 within

the allocated memory region. Because the wrapper allocated an

additional 2𝑁 bytes, there must be an address that is aligned by

2
𝑁 bytes. (3) The wrappers store the object ID at the base address.

(4) The wrappers return a pointer value with a value of the base

address plus 8, after storing the object ID into the pointer value’s

unused bits. If the aligned memory address is 𝑋 + 2
𝑁 (where 𝑋 is

a virtual address returned from the basic allocator), the wrappers

store the object ID at the address 𝑋 + 2
𝑁 and the object will use

memory from address 𝑋 + 2
𝑁 + 8. Because the wrappers allocate

an additional 2𝑁 + 8 bytes, the object can be stored from the virtual

address (𝑋 + 2
𝑁 + 8).

6.2 ViKTBI for AArch64 on Android Kernel

ViKTBI using the TBI feature of recent ARM processors achieves

much lower performance overhead. With TBI, software can use

the most significant 8 bits of the virtual address to hold additional

information about an address. By employing this hardware feature,

ViK can utilize the 8 bits without handling it in software. However,

because only 8 bits are available, we do not use the base identifier in

ViKTBI in order to have 8-bit entropy for object IDs. This implies that

only pointer values that point to the base addresses of objects can be

inspected. Also, when an object is created, we insert padding bytes

and store an object ID right before the base address of an object

so that the ID can be accessed via the base address. Albeit ViKTBI

cannot provide as strong of security as ViK can, its high efficiency

makes it very practical. We evaluate the security effectiveness and

performance overhead in Section 7.

6.3 Determining the Constants

As discussed in Section 4.1, our proof-of-concept implementation

of the instrumentation pass has a functionality to provide the sizes

of dynamically allocated memory objects so that we can analyze

them and decide the two parameters. Table 1 shows our results on

the size of objects dynamically allocated in Linux kernel 4.12. This

object memory size analysis helps with ViK’s effectiveness and is

done one-time for the kernel. Based on this analysis, we found that

over 98% of the kernel memory objects are smaller than 4 KB. In

the Android kernel, about 98% of memory objects are smaller than

4 KB as well. Therefore, for the security evaluation, we used 6-bit

base identifiers with the parameters𝑀=12 and 𝑁=6 to have 10-bit

identification codes for all objects, and we did not assign an object

ID for the objects which are larger than 4 KB. We set the constants

according to the 𝑀 and 𝑁 shown in Table 1 for evaluating the

memory overhead of ViK. It is worth noting that different sets of

the constants (𝑀 and 𝑁) can be used for optimal memory overhead

on each system. The prototype of ViK only supports these sets

of parameters, and we leave this implementation improvement as

future work (see Section 8).

7 EVALUATION

We evaluate the effectiveness and performance of ViK in protecting

OS kernels and user-space programs.

7.1 Experiment Setup

For OS kernels, we built Linux kernel 4.12 on x86-64 and Android

kernel 4.14 on AArch64. All the experiments were conducted on a

workstation with an Intel i7-6700 CPU with Ubuntu 18.04 x86-64

and on a development board featuring an ARM Cortex-A76 for the

Android kernel.

Optimization modes. We evaluate ViK-protected OS kernels in

the following optimization modes.

ViK𝑆 : An 𝑖𝑛𝑠𝑝𝑒𝑐𝑡 () function is inserted for every dereference of

possibly UAF-unsafe pointers.

ViK𝑂 : All optimization methods presented in Section 5.2 are en-

abled. In this mode, ViK only inspects the first object access

of each UAF-unsafe pointer in every function.

ViKTBI : ViK is implemented using the Top Byte Ignore (TBI) fea-

ture of AArch64, where ViK inspects only pointer values

that point to the base address of objects.

7.2 Kernel Instrumentation Results

Wemeasured the number of inserted inspection functions (inspect ())

and the increase of image sizes after deploying each of the three

variants of ViK on Ubuntu and Android kernels in different archi-

tectures. Our results, in Table 2, show that in both kernels, ViK𝑆
inserted inspection functions for around 17% of pointer operations,

which means the static analysis regarded 17% of all pointer opera-

tions as potentially operating on UAF-unsafe pointers. The other

83% of pointer operations were UAF-safe and do not need any pro-

tection. Moreover, in ViK𝑂 mode, our results show that only 4%

of pointer operations must be inspected by ViK: ViK𝑂 decreases

runtime overhead by omitting protection for over three quarters of

all UAF-unsafe pointer operations. ViKTBI further reduces runtime

overhead by only instrumenting less than 8% of pointer operations

that are protected by ViK𝑂 .

7.3 Security Effectiveness

ViK mitigates UAF exploits with no false positives (i.e., incorrectly

blocking pointer accesses that are not UAF). Nonetheless, ViK may

have false negatives and allows a UAF exploit: If an object that

has been re-allocated to the freed region has the same object ID

as the victim object because of an object ID collision, ViK cannot

mitigate the UAF exploit. Fortunately, as discussed in Section 4.2,

the probability of an object ID collision is small enough to make

ViK practical.

Another case of false negatives occurs only in ViK𝑂 where ViK

does not mitigate the exploit immediately but instead exhibits a

delayed mitigation. Figure 4 shows a case where a UAF exploit

occurs due to a race condition. If dealloc() is executed at any

278

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 2: Statistics of ViK-protected Linux kernel 4.12 (x86-64) and Android kernel 4.14 (AArch64). About 17% of all pointer

operations involve UAF-unsafe pointers. ViK𝑂 and ViKTBI instrument much fewer pointer operations than ViK𝑆 does.

Kernel & Mode Image size (MB) Build time # of pointer operations # of inspect () functions (%)
Architecture Original ViK (delta %) Original ViK (delta)

Linux kernel 4.12 ViK𝑆 36.26 63.38 (+27.12%) 19m 11s 26m 31s (+7m 20s) 2,401,337 421,406 (17.54%)
x86-64 ViK𝑂 48.33 (+12.07%) 22m 10s (+2m 59s) 91,134 (3.79%)

Android kernel 4.14 ViK𝑆 189.09 208.20 (+19.11%) 23m 3s 27m 32s (+4m 29s) 2,012,421 333,020 (16.54%)
AArch64 ViK𝑂 200.94 (+11.85%) 25m 38s (+2m 35s) 78,782 (3.91%)

ViKTBI 200.93 (+11.84%) 25m 30s (+2m 27s) 25,969 (1.29%)

void race() {
 global_ptr->num = 1;
 …
 global_ptr->num = 0;
 …

1

2

3

4

void dealloc() {
 free(global_ptr);
}

5

6

7

8

9

10

Figure 4: Example code snippets that can cause a UAF error

via a race condition.

time before the last dereference of global_ptr, this variable will

become a dangling pointer and will cause a UAF. ViK𝑆 inspects

every UAF-unsafe pointer operation (at both Line 2 and Line 4) and

mitigates the UAF exploit. However, ViK𝑂 only inserts inspection

functions at Line 2 of race(). It is then possible for a UAF to occur

if the object that global_ptr points to is deallocated between

executing Line 2 and Line 4. In the worst-case scenario, the attacker

frees the victim object between Line 2 and Line 4 and re-allocates a

new object to the dereferenced memory region, which will evade

our protection. ViK𝑂 will still mitigate the exploit if the pointer is

dereferenced again in other functions later, as we have observed in

CVE-2019-2215.

Mitigating real-world kernel exploits. To evaluate the effective-

ness of ViK, we selected five known UAF vulnerabilities with public

exploits on Linux kernel and tested them against a ViK-protected

Linux kernel 4.12. All these vulnerabilities are related to race condi-

tions. For Android kernel, we picked four UAF vulnerabilities, three

out of which are caused by race conditions. All the exploits are

collected from the Exploit Database and another research project

FUZE [3, 36]. Five of these vulnerabilities (CVE-2017-17053, -15649,

CVE-2019-2215, -2025, and -2000) can be exploited directly on Linux

kernel 4.12 and Android kernel 4.14 (without ViK), while the other

four vulnerabilities (CVE-2017-11176, -7533, -2636, CVE-2016-8655,

and -4817) do not exist on our versions of Linux and Android ker-

nels. We manually ported them onto Linux kernel 4.12 and Android

Kernel 4.14 by reverting the related patches. Details of the selected

vulnerabilities and the results of the security evaluation are shown

in Table 3. As expected, ViK-protected kernels, including ViK𝑂 ,

detected UAFs caused by these vulnerabilities.

TBI optimization.We evaluated the TBI-featured variant of ViK,

ViKTBI , on Android kernel 4.14 and list the results in Table 3. ViKTBI
did not stop the exploit for CVE-2019-2215 because the exploit uses

a pointer that points to the middle of an object while ViKTBI only

inspects pointers that point to the base address of an object. Also,

it is worth noting that a delayed mitigation happened with CVE-

2019-2000: Since the dangling pointer used in the exploit points to

the middle of an object, ViKTBI did not detect the UAF exploit when

this pointer is first dereferenced and the victim object is updated.

Table 3: Experimental results of ViK against known UAF ex-

ploits in OS kernels.

Linux kernel 4.12
CVE Race Condition ViK𝑆 ViK𝑂 (ViKTBI)

CVE-2017-17053 Yes ✓ ✓ (✓)
CVE-2017-15649 Yes ✓ ✓ (✓)
CVE-2017-11176 Yes ✓ ✓ (✓*)
CVE-2017-2636 Yes ✓ ✓ (✓)
CVE-2016-8655 Yes ✓ ✓ (✓)
CVE-2016-4557 Yes ✓ ✓ (✓)

Android kernel 4.14
CVE Race Condition ViK𝑆 ViK𝑂 ViKTBI

CVE-2019-2215 No ✓ ✓ ✗

CVE-2019-2025 Yes ✓ ✓ ✓

CVE-2019-2000 Yes ✓ ✓ ✓*
CVE-2017-7533 Yes ✓ ✓ ✓

*: ViKTBI did not immediately stop the exploit when UAF happened, but it stopped the
attack through a delayed mitigation.

However, ViKTBI detected the UAFwhen the original pointer (which

points to the base address of the object) is later used before returning

from the kernel to user space, which illustrates the effectiveness of

ViK even when applying all aforementioned optimizations. Finally,

since current x86-64 CPUs do not implement TBI, we examined

every Linux kernel vulnerability in our dataset, manually analyzed

if ViKTBI will defend against each UAF exploit, and present the

results in the ViKTBI column of Linux kernel in Table 3.

Sensitivity analysis of object IDs. We performed a sensitivity

analysis of object IDs by using Linux kernel UAF exploits in Table 3.

For the analysis, we executed each exploit 2,000 times on a ViK-

protected Linux kernel. Eventually, ViK detected all UAF errors. As

the result demonstrates, creating a successful exploit is very difficult

under ViK because an attacker must re-allocate an object that has

the same base identifier as the victim object and the newly allocated

object must have the same object ID which is randomly selected

(the random space is not decreased by allocating new objects).

7.4 Performance: OS Kernels

For performance evaluation, we used two renowned benchmark

tools: LMbench and UnixBench. We then evaluated the memory

overhead of each kernel when protected by ViK.

Micro benchmarks on kernels. We first present the benchmark

results using LMbench which measures latency and basic costs

of key operations of UNIX/POSIX systems [21]. Table 4 shows

the results for each kernel. In ViK𝑂 , the average percentages of

increased latency are 20.71% and 19.86% on the Ubuntu and Android

kernel, respectively. Because ViK inserts fewer inspect () functions

into the Android kernel, its performance overhead is lower than

ViK on the Linux kernel 4.12. As expected, ViK𝑂 has substantially

279

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

Table 4: The runtime overhead measured by LMbench.

Linux kernel 4.12 Android kernel 4.14
Benchmark ViK𝑆 ViK𝑂 ViK𝑆 ViK𝑂

Latency (percentage of increase)
Simple syscall 16.88% 10.82% 15.60% 7.16%
Simple fstat 96.74% 67.41% 68.86% 47.15%

Simple open/close 140.40% 77.01% 74.88% 38.62%
Select on fd’s 23.19% 15.42% 35.52% 28.47%

Sig. handler installation 6.36% 4.09% 19.24% 6.37%
Sig. handler overhead 41.19% 4.34% 113.83% 46.86%

Protection fault 0% 0% 5.52% 0%
Pipe 40.91% 26.48% 60.80% 15.45%

AF_UNIX sock stream 26.91% 8.35% 77.91% 23.80%
Process fork+exit 85.90% 68.01% 35.13% 16.40%

Process fork+/bin/sh -c 96.45% 62.66% 32.21% 14.31%
GeoMean 40.77% 20.71% 37.13% 19.86%

Table 5: The performance overhead measured by

UnixBench.

Linux kernel 4.12 Android kernel 4.14
Benchmark ViK𝑆 ViK𝑂 ViK𝑆 ViK𝑂

Dhrystone 2 0% 0% 0% 0%
DP Whetstone 0.83% 0.21% 0% 0%

Execl Throughput 77.95% 48.18% 50.32% 28.62%
File Copy 1024 bufsize 100.30% 56.43% 123.00% 61.13%
File Copy 256 bufsize 99.33% 54.45% 148.91% 77.51%
File Copy 4096 bufsize 70.71% 41.89% 71.42% 34.01%

Pipe Throughput 110.90% 74.66% 60.77% 41.55%
Pipe-based Ctxt. Switching 126.70% 80.78% 50.09% 0.39%

Process Creation 85.05% 57.22% 42.53% 22.58%
Shell Scripts (1 concurrent) 58.47% 36.16% 34.88% 22.13%
Shell Scripts (8 concurrent) 55.96% 35.71% 27.24% 16.02%

System call overhead 8.89% 1.11% 30.18% 15.45%
GeoMean 45.14% 22.20% 54.80% 19.80%

better performance. Compared with ViK𝑆 , on both kernels, ViK𝑂
exhibits about 20% lower performance overhead.

We also evaluated ViK-protected kernels using UnixBench, which

includes benchmarks that test the performance of a UNIX-like sys-

tem [1]. It generates a system index score as an overall indicator of

the performance. As shown in Table 5, the results are similar to the

average percentages of increased latency in Table 4. In summary,

micro benchmark results show that the ViK-protected OS kernels

incur around 22% and 20% runtime overhead on Android and Linux

kernels, respectively.

Memory overhead. To measure the memory overhead of ViK-

protected kernels, we checked the total amount of memory used by

each kernel in /proc/meminfo. We measured the memory usage (1)

after the system finished booting, and (2) after running LMbench

and report the results in Table 6. When ViK aligned memory ad-

dresses by 64 bytes, the overall memory overhead was around 42%.

ViK achieved much lower memory overhead when it employed the

alignment strategy as described in Table 1 where 16-byte alignment

is used for objects smaller than 256 bytes and 64-byte alignment

is used for other objects. There is no difference in memory usage

between ViK𝑆 and ViK𝑂 mode because they allocate the same num-

ber of objects. The major source of memory overhead is the amount

of memory added to structs to guarantee the alignment. In our

implementation of ViK, we used the constants shown in Table 1.

For lower memory overhead, ViK will need various sets of𝑀 and

𝑁 that are optimally calculated for different sizes of kernel objects,

which requires a more complex implementation that we leave as

future work.

Table 6: Memory overhead imposed by ViK on each kernel.

After Reboot (%) After Bench (%)
Memory alignment Ubuntu Android Ubuntu Android

Table 1 13.08% 16.01% 25.03% 28.30%

64 bytes 42.42% 43.98% 41.69% 43.89%

Table 7: The performance andmemory overhead on ViKTBIś

protected Android kernel.

Android kernel 4.14 Ð ViKTBI
UnixBench benchmarks Overhead LMbench benchmarks Overhead

Dhrystone 2 0% Simple syscall 0%
DP Whetstone 0% Simple fstat 0%

Execl Throughput 0% Simple open/close 0.9%
File Copy 1024 bufsize 1.0% Select on fd’s 0.2%
File Copy 256 bufsize 6.3% Sig. handler installation 0%
File Copy 4096 bufsize 0% Sig. handler overhead 0%

Pipe Throughput 0% Protection fault 0%
Pipe-based Ctxt. Switching 0% Pipe 0%

Process Creation 1.1% AF_UNIX sock stream 2.1%
Shell Scripts (1 concurrent) 0% Process fork+exit 0%
Shell Scripts (8 concurrent) 0% Process fork+/bin/sh -c 0%

System Call Overhead 0%
GeoMean 1.91% GeoMean 0.72%

Memory overhead
After Reboot 7.80% After Bench 17.50%

Performance of ViKTBI . The use of TBI and the reduced number

of inspection functions make the runtime overhead of ViKTBI neg-

ligible (<2%) as shown in Table 7. The memory overhead of ViKTBI
is low: 8% after booting and 17% after running benchmarks. We

believe the performance of ViKTBI is sufficiently low to be deployed

on customer-facing devices.

8 LIMITATIONS

Protection scope. As in Section 3, currently ViK does not handle

stack pointers, i.e., those pointing to any part of stack frames, be-

cause such pointers have a short lifetime bounded by a function, and

thus, attackers have a limited time to access such pointers, which

makes stack pointers hard to exploit. However, we believe that

ViK can be extended for preventing stack-based temporal safety

violations by using a similar mechanism for heap objects. Also,

inspecting only the very first pointer operation of a UAF-unsafe

pointer value in a function might cause false negatives at the time

when the pointer operation executes, but, we showed that ViK and

ViKTBI could catch this case as discussed in Section 7.3.

Static analysis. ViK finds pointer operations using UAF-unsafe

pointers in a flow- and path-sensitive manner. We bypass common

challenges of static analysis (e.g., scalability) by limiting the range

of static analysis to individual modules. However, this design de-

cision limits the potential of ViK’s optimizations. We expect ViK

to have even lower runtime overhead without sacrificing the secu-

rity guarantees if we can apply inter-procedural and inter-modular

optimizations.

Arbitrary memory read and write. Arbitrary memory read and

write vulnerabilities, that are not based on temporal meory safety

violations, may allow attackers to tamper the internal state of ViK,

which enables Object ID forging. We argue that such vulnerabilities

280

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

are rare in real world. These vulnerabilities can be addressed by

other defenses.

Implementation details.Although ViK allows users to determine

the values of two parameters (𝑀 and 𝑁) by analyzing sizes of all

involved objects in the target program, manual effort is required

to make optimal decisions. Using large slots may cause significant

memory fragmentation, which may negatively impact runtime per-

formance. Therefore, beyond identifying sizes of memory objects,

automatically suggesting the optimal constants would be helpful to

prevent unnecessary memory overhead. Also, ViK currently does

not support objects larger than 4 KB. We leave this improvement as

future work. In addition, ViK does not support using different sets

of constants at the same time, which we deem as pure engineering

effort. During instrumentation, base identifier calculation functions

with different constants can be injected for each pointer operation,

depending on the size of each object and predefined constants. We

can further reduce memory overhead and cover more memory ob-

jects that are larger than 4 KB by implementing support of multiple

sets of constant values.

Shifting pointers. The current implementation of ViK does not

specially handle shift operations for pointers. Therefore, shifting

a pointer (e.g., ptr = ptr ż 4) and simply using it without a proper

restoration process of the pointer will make a system panic. Even

though we have not met such cases yet, ViK’s instrumentation pass

may need to handle them provided shifting operations remove/-

modify object IDs in pointers. We leave this limitation as future

work.

57-bit memory address. For CPUs using the 57-bit linear-address

space with 5-level paging [28], we can only use the most significant

7 bits of the virtual address. Hence, we have to use 7-bit object

IDs and inspect pointer operations accessing the base address of

memory objects similar to ViKTBI .

9 RELATED WORK

Access validation. Prior mitigation work validates memory ac-

cesses in ways that are similar to ViK [23, 25, 32], but they all

introduce significant runtime overhead and false positives. ViK

achieves better performance than any other access validation ap-

proaches. Moreover, these defenses have compatibility issues that

ViK does not have: CETS does not support multi-threading [25],

and MemSafe requires performing a full-program data-flow anal-

ysis [32]. Also, PTAuth suffers from the search time for the base

address from interior pointers pointing to the middle of objects [23].

While ViK can search the base address in constant time, regardless

of the size of objects, searching time of PTAuth linearly increases

upon the size of objects (for a 1024-byte object, PTAuth has to run

a PAC instruction 64 times in the worst case). In Linux kernel, it

is very common to use such interior pointers, and thus, PTAuth

would experience high performance overhead for searching base

addresses of memory objects.

Pointer invalidation. Many systems attempt to detect the cre-

ation of dangling pointers by tracking reference relationships be-

tween pointers and objects [11, 18, 30, 34, 38]. Their designs differ

regarding the format of the metadata and the manner in which the

metadata is managed. CRCount uses a pointer bitmap to represent

locations of heap pointers for reference counting [30]. pSweeper

invalidates dangling pointers through another thread that runs in

the background, managing a live pointer list and sweeping dan-

gling pointers [20]. DangSan employs an append-only per-thread

pointer logger for each memory object [34]. DANGNULL records

the relationship between objects in a hierarchical structure called

shadowObjTree [18]. However, common to all approaches is the

existence of the joint metadata, which imposes high runtime and

memory overhead, especially for multi-threaded programs. Addi-

tionally, these approaches suffer from propagations of type-unsafe

pointers and non-pointer type variables that have pointer values,

because of the difficulty of achieving complete data flow analy-

sis [18, 30, 34, 38].

Safe memory allocation. Another type of UAF mitigation is to

prevent reusing unsafe address spaces when a new object is allo-

cated [7, 10, 12, 26, 31]. These approaches typically suffer from high

memory overhead caused by their object allocation or memory

management policies. FFmalloc [35] and Markus [6] showed good

memory and performance overhead in user-space programs. How-

ever, ViK has much lower memory overhead in allocation-intensive

programs (2.42%) than FFmalloc (about 53%) and Markus (about

40%). Also, these approaches are not intended to be used by OS

kernels.

Hardware-based approach. WatchdogLite proposes a new in-

struction set (Intel’s Instruction Set Architecture extension) for

preventing out-of-bound accesses and UAF errors through compiler

support [24]. BOGO utilizes bounds metadata managed by the Intel

MPX for providing temporal memory safety [39]: When memory is

deallocated, BOGO checks the bound metadata and invalidates dan-

gling pointers. Although both approaches heavily rely on hardware

features, they all impose significant runtime overhead.

10 CONCLUSION

Temporal memory safety violations are critical, and it is challenging

to enforce a temporal memory safety in an efficient, strong, and

flexible (widely applicable) manner. In this paper, we propose a

novel approach, ViK, that detects UAF exploits with no false posi-

tives. Also, as our evaluation indicates, ViK imposes low overhead,

and is a practical mitigation.

ACKNOWLEDGMENTS

Many thanks to the anonymous referees for their thoughtful re-

views. We would also like to thank our shepherd, Changhee Jung.

This material is based upon work supported in part by the Na-

tional Research Foundation of Korea (NRF) grant funded by the Ko-

rea government (MSIT) (No. NRF-2021R1A4A1029650), the Defense

Advanced Research Projects Agency (DARPA) HR001118C0060 and

FA875019C0003, the Office of Naval Research (ONR) KK1847, and

Samsung Research, Samsung Electronics.

Any opinions, findings, conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not neces-

sarily reflect the views of United States Government or any agency

thereof.

281

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

≈
5
5
0

≈
2
,1
0
0

≈
4
2
0

≈
5
0
0

≈
4
1
0

≈
3
0
5

≈
3
1
0

≈
3
8
0

≈
1
,3
3
0

≈
8
0
0

≈
5
0
0

≈
4
0
0

≈
9
9
0

≈
3
1
0

≈
3
3
0

≈
6
7
0

≈
3
5
0

≈
1
3
0

≈
1
4
0

≈
6
0

≈
6
0

Geo
Me
an

Geo
Me
an

Figure 5: Runtime and memory overhead comparison of the user-space implementation of ViK with FFmalloc, MarkUs,

pSweeper, CRCount, Oscar, and DangSan on the SPEC CPU 2006 benchmark programs.

A APPENDIX

A.1 Running Example of the Static Analysis

Listing 3 shows an example of our static analysis result. In the

ptr_ops function, unsafe_ptr has a UAF-unsafe return value from

the get_obj function, and thus, is unsafe even though the pointer

is a stack variable. On the other hand, safe_ptr is a safe pointer

value (because the pointer value has not been stored in the heap

or a global variable) and its operations are not inspected until the

point where it may turn into an unsafe pointer value (from Line 23).

However, the result of the function call at Line 23 does not affect the

UAF-safety of the safe_ptr’s pointer operation at Line 26 since the

code is under the else condition. Hence, ViK does not inspect the

pointer operation on Line 26; however, ViK must inspect the pointer

operation on Line 30. ViK omits the inspection of unsafe_ptr’s

pointer operation on Line 31 because the unsafe pointer value has

already been inspected by ViK and it does not contain a new unsafe

pointer value copied from somewhere. If a new unsafe pointer value

might be in unsafe_ptr, ViK will inspect the pointer operation.

Our static analysis can confirm that an argument of the add

function is a safe pointer value whenever the function is called;

thus, ViK does not inspect the pointer operation using the argument

on Line 4. On the contrary, unsafe_ptr is used as an argument

of the sub function. Hence, the pointer operation inside the sub

function must be inspected, even though the pointer value has been

inspected before the function is called.

As shown in the example, our static analysis is flow-sensitive

and path-sensitive, which not only significantly reduces the perfor-

mance overhead, but also helps provide robust security guarantees

against UAF attacks.

A.2 User-Space Implementation

We also implement ViK for C and C++ user-space programs. The

user-space version of ViK is the same as the kernel-space ViK except

for the following aspects:

• User-space programs use different allocators than the kernel,

so the instrumentation pass creates appropriate wrappers for

memory allocations such as malloc and calloc.

• In user-space, valid pointer values have the first 16 bits as 0,

instead of 1 in the kernel. The inspect () function is changed in

user-space ViK to account for this difference.

• Programs may use shared libraries that are ViK-unaware. ViK

can be used in programs with ViK-unawre libraries. However,

similar to the other compiler-based approaches [18, 30, 34], if a

library is not instrumented by the static instrumentation pass,

pointer values that come from the ViK-unaware shared library

cannot be inspected in ViK-protected programs.

A.3 Performance: User-Space Programs

We evaluated the user-space ViK implementation by measuring

the performance of ViK-protected C and C++ programs of SPEC

CPU 2006. To evaluate the runtime and memory overhead of ViK𝑂
(16-byte aligned), We converted the LLVM instrumentation pass

into a Link-Time Optimization (LTO) module and compiled the

programs with the LTO module enabled. The experimental results

are shown in Figure 5. For clarity, we also include in the figure

the overhead numbers of applying six state-of-the-art user-space

runtime UAF protections (FFmalloc, MarkUs, pSweeper, CRCount,

Oscar, and DangSan) on the same programs.3

Runtime overhead. ViK has average runtime overhead of 10.6%,

higher than FFmalloc (2.3%) and same as MarkUs within rounding

error. PTAuth showed 26% of the runtime overhead on average for

3The performance numbers of the previous work are extracted from the original papers
or provided by their authors.

282

ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

1 struct obj *global_ptr = NULL;

2

3 void add(struct obj *ptr) {

4 *ptr += 5; /* safe */

5 }

6 void sub(struct obj *ptr) {

7 *ptr -= 5; /* unsafe -> inspect() */

8 }

9 void make_global(struct obj *ptr) {

10 global_ptr = ptr;

11 }

12 void ptr_ops(int arg) {

13 struct obj *safe_ptr = malloc(4); /* safe */

14 struct obj *unsafe_ptr = get_obj(); /* unsafe */

15

16 *safe_ptr = 10; /* safe */

17 *unsafe_ptr = 10; /* unsafe -> inspect() */

18

19 add(safe_ptr);

20 sub(unsafe_ptr);

21

22 if(arg == 0) {

23 make_global(safe_ptr); /* safe -> unsafe */

24 }

25 else {

26 *safe_ptr = 10; /* safe */

27 global_ptr = malloc(4);

28 }

29

30 *safe_ptr = 0; /* unsafe -> inspect() */

31 *unsafe_ptr = 0; /* unsafe -> restore() */

32 ...

33 }

Listing 3: An example of the static analysis result. Our flow-

sensitive and path-sensitive static analysis helps ViK reduce

the performance overhead significantly as well as provide

robust security guarantees against UAF attacks.

several SPEC 2006 benchmarks (i.e., bzip2, mcf, milc, gobmk, sjeng,

libquantum, h264ref, lbm, and sphinx3), ViK imposes around 1%

runtime overhead on average for the same benchmarks. ViK per-

forms better than the other five defenses except for FFmalloc when

we compare the average overhead on the most pointer-intensive

8 benchmarks in terms of the number of memory allocations and

pointer operations (perlbench, omnetpp, mcf, gcc, povray, milc,

xalancbmk, astar, soplex, and gobmk)ÐViK incurs average run-

time overhead of about 20%, while it is 25% for MarkUs, 27% for

pSweeper, 48% for CRCount, 107% for Oscar, and 128% for Dan-

gSan. ViK performs better than FFmalloc for gcc (33.03% and 53.7%,

respectively) that uses the largest amount of memory among the

benchmarks [35]. This indicates that ViK would have better run-

time performance than FFmalloc for programs which consumes a

large amount of memory.

Compared to other defenses, ViK shows better or similar runtime

overhead on all but two programs, which are bzip2 and h264ref.

This is because in ViK, pointer dereferences have a larger impact

on the runtime overhead than memory allocations or deallocations.

These two programs have relatively low numbers of memory al-

locations and deallocations but possess high numbers of pointer

dereferences, which are unideal for ViK. For example, during an

execution of bzip2, the malloc function executed 8 times at the

beginning of its compression routine and 6 times at the beginning of

its decompression routine, which are much lower than the numbers

for other programs.

Memory overhead.We measured the memory overhead of ViK-

protected user-space programs by taking the maximum resident set

sizes (RSS). ViK incurs average memory overhead of about 9%, com-

pared with 61% for FFmalloc, 16% for MarkUs, 130% for pSweeper,

17% for CRCount, 60% for Oscar, 140% for DangSan. Overall, ViK

achieves similar or lower memory overhead than the other solu-

tions on all tested programs except for h264ref. We found that

the majority of memory allocations in h264ref are small-sized,

which severely penalizes ViK due to its memory alignment enforce-

ment. This is supported by ViK’s performance on the most four

allocation-intensive benchmarks perlbench, xalancbmk, omnetpp,

and dealIIÐViK incurs much less memory overhead (2.42%) than

the others (about 53% for FFmalloc, 40% for MarkUs, and 50% for

CRCount).

REFERENCES
[1] 2018. Byte-unixbench: A Unix benchmark suite. https://github.com/kdlucas/byte-

unixbench.
[2] 2019. Arm A-Profile Architecture Developments: Armv8.5-A. https:

//community.arm.com/developer/ip-products/processors/b/processors-
ip-blog/posts/enhancing-memory-safety.

[3] 2019. Exploit Database. https://www.exploit-db.com.
[4] 2019. KASAN: remove use after scope bugs detection. https:

//kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/
7771bdbbfd3d6f204631b6fd9e1bbc30cd15918e.

[5] 2019. White Paper: ARM v8.5-A Memory Tagging Extension. ARM.
[6] Sam Ainsworth and Timothy M Jones. 2020. MarkUs: Drop-in use-after-free

prevention for low-level languages. In Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland). San Francisco, CA.

[7] Periklis Akritidis. 2010. Cling: AMemory Allocator to Mitigate Dangling Pointers.
In Proceedings of the 19th USENIX Security Symposium (Security). Washingtion,
DC, 177ś192.

[8] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy
Bounds Checking: An Efficient and Backwards-Compatible Defense against Out-
of-Bounds Errors. In Proceedings of the 18th USENIX Security Symposium (Security).
Montreal, Canada.

[9] ARM. [n.d.]. Address spaces in Armv8-A. https://developer.arm.com/architectures/
learn-the-architecture/memory-management/address-spaces-in-armv8-a.

[10] Emery D Berger and Benjamin G Zorn. 2006. DieHard: probabilistic memory
safety for unsafe languages. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). Ottawa, Canada,
158ś168.

[11] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA). Minneapolis, MN, 133ś143.

[12] Thurston HY Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A practical
page-permissions-based scheme for thwarting dangling pointers. In Proceedings of
the 26th USENIX Security Symposium (Security). Vancouver, BC, Canada, 815ś832.

[13] Vincenzo Frascino. 2019. ARM v8.5 Memory Tagging Extension. In Linux
Plumbers Conference 2019. Lisbon, Portugal.

[14] Intel. [n.d.]. 5-Level Paging and 5-Level EPT. https://software.intel.com/sites/
default/files/managed/2b/80/5-level_paging_white_paper.pdf.

[15] RISC-V International. 2019. RISC-V Instruction Set Manual. https://github.com/
riscv/riscv-isa-manual.

[16] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel address space
layout randomization with intel tsx. In Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS). Vienna, Austria, 380ś392.

[17] The kernel development community. 2019. The Linux Kernel 5.9.0-rc3 documenta-
tion: Application Data Integrity (ADI). https://www.kernel.org/doc/html/latest/
sparc/adi.html.

[18] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification. In Proceedings of the 2015 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[19] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, J Ekberg,
and N Asokan. 2019. PAC it up: Towards pointer integrity using ARM pointer
authentication. In Proceedings of the 28th USENIX Security Symposium (Security).
Santa Clara, CA, 781ś797.

[20] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A robust and efficient
defense against use-after-free exploits via concurrent pointer sweeping. In Pro-
ceedings of the 25th ACM Conference on Computer and Communications Security

283

https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://www.exploit-db.com
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/7771bdbbfd3d6f204631b6fd9e1bbc30cd15918e
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/7771bdbbfd3d6f204631b6fd9e1bbc30cd15918e
https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux/+/7771bdbbfd3d6f204631b6fd9e1bbc30cd15918e
https://developer.arm.com/architectures/learn-the-architecture/memory-management/address-spaces-in-armv8-a
https://developer.arm.com/architectures/learn-the-architecture/memory-management/address-spaces-in-armv8-a
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://www.kernel.org/doc/html/latest/sparc/adi.html
https://www.kernel.org/doc/html/latest/sparc/adi.html

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé, and G-J. Ahn

(CCS). Toronto, Canada, 1635ś1648.
[21] Larry WMcVoy, Carl Staelin, et al. 1996. lmbench: Portable tools for performance

analysis. In Proceedings of the 1996 USENIX Annual Technical Conference (ATC).
San Diego, CA, 279ś294.

[22] MIPS. 2015. MIPS Architecture For Programmers Volume III:
MIPS64/microMIPS64TM Privileged Resource Architecture. https:
//www.mips.com/?do-download=the-mips64-and-micromips64-privileged-
resource-architecture-v6-03.

[23] RezaMirzazade farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Temporal
Memory Safety via Robust Points-to Authentication. In Proceedings of the 30th
USENIX Security Symposium (Security). Vancouver, Canada.

[24] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2014. Watchdoglite:
Hardware-accelerated compiler-based pointer checking. In Proceedings of the 2014
International Symposium on Code Generation and Optimization (CGO). Orlando,
FL.

[25] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. ACM Sigplan Notices 45, 8
(2010), 31ś40.

[26] Gene Novark and Emery D Berger. 2010. DieHarder: securing the heap. In
Proceedings of the 17th ACMConference on Computer and Communications Security
(CCS). Chicago, IL, 573ś584.

[27] Oracle. 2019. Oracle Solaris 11.3 Programming Interfaces Guide: Using Applica-
tion Data Integrity (ADI). https://docs.oracle.com/cd/E53394_01/html/E54815/
gqajs.html.

[28] Lenovo Press. 2021. Introduction to 5-Level Paging in 3rd Gen Intel Xeon Scalable
Processors with Linux. https://lenovopress.com/lp1468.pdf.

[29] Qualcomm. 2017. Pointer Authentication on ARMv8.3. https:
//www.qualcomm.com/media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf.

[30] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.
2019. CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-
after-free in Legacy C/C+. In Proceedings of the 2019 Annual Network and Dis-
tributed System Security Symposium (NDSS). San Diego, CA.

[31] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu.
2017. Freeguard: A faster secure heap allocator. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS). Dallas, TX, 2389ś
2403.

[32] Matthew S Simpson and Rajeev K Barua. 2013. MemSafe: ensuring the spatial
and temporal memory safety of C at runtime. Software: Practice and Experience
43, 1 (2013), 93ś128.

[33] Inc. Sun Microsystems. 2007. OpenSPARC T2 Core Microarchitecture Spec-
ification. https://www.oracle.com/technetwork/systems/opensparc/t2-06-
opensparct2-core-microarch-1537749.html.

[34] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. Dangsan:
Scalable use-after-free detection. In Proceedings of the 12th European Conference
on Computer Systems (EuroSys). Belgrade, Serbia, 405ś419.

[35] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, JungWon Lim, Sanidhya
Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free Attacks with Fast
Forward Allocation. In Proceedings of the 30th USENIX Security Symposium (Secu-
rity). Vancouver, Canada.

[36] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium (Security).
Baltimore, MD, 781ś797.

[37] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS). Denver, CO, 414ś425.

[38] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabili-
ties due to dangling pointers. In Proceedings of the 2015 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

[39] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy Spatial
Memory Safety, Get Temporal Memory Safety (Almost) Free. In Proceedings of the
24th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Providence, RI, 631ś644.

284

https://www.mips.com/?do-download=the-mips64-and-micromips64-privileged-resource-architecture-v6-03
https://www.mips.com/?do-download=the-mips64-and-micromips64-privileged-resource-architecture-v6-03
https://www.mips.com/?do-download=the-mips64-and-micromips64-privileged-resource-architecture-v6-03
https://docs.oracle.com/cd/E53394_01/html/E54815/gqajs.html
https://docs.oracle.com/cd/E53394_01/html/E54815/gqajs.html
https://lenovopress.com/lp1468.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.oracle.com/technetwork/systems/opensparc/t2-06-opensparct2-core-microarch-1537749.html
https://www.oracle.com/technetwork/systems/opensparc/t2-06-opensparct2-core-microarch-1537749.html

	Abstract
	1 Introduction
	2 Background
	2.1 Use-After-Free Exploits and Defenses
	2.2 Unused Bits in 64-Bit Virtual Addresses

	3 Overview
	4 Object ID
	4.1 Generating Object IDs
	4.2 Object ID Collisions

	5 Instrumentation
	5.1 UAF-Safe Pointers
	5.2 Determining UAF-Safety
	5.3 Transformation

	6 Implementation
	6.1 Kernel Implementation
	6.2 ViKTBI for AArch64 on Android Kernel
	6.3 Determining the Constants

	7 Evaluation
	7.1 Experiment Setup
	7.2 Kernel Instrumentation Results
	7.3 Security Effectiveness
	7.4 Performance: OS Kernels

	8 Limitations
	9 Related Work
	10 Conclusion
	A Appendix
	A.1 Running Example of the Static Analysis
	A.2 User-Space Implementation
	A.3 Performance: User-Space Programs

	References

